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Reasoning  System 

Symbolic ,  Statistical 
 

What  is  Reasoning ? 
 
 • Reasoning  is  the  act  of  deriving a conclusion from certain premises 

using a given methodology.   
 

 • Reasoning is a process of thinking; reasoning is logically arguing; 

reasoning   is  drawing  inference.  
 

 • When a system is required to do something, that it has not been 

explicitly told how to do, it must reason. It must figure out what it needs 

to know from what it already knows. 
 

 • Many types of Reasoning have long been identified and recognized, but 

many questions regarding their logical and computational properties 

still  remain controversial.  
 

 • The popular  methods of Reasoning include abduction, induction, model-

based, explanation and confirmation. All of them are intimately related 

to problems of belief revision and theory development, knowledge 

assimilation, discovery and learning. 
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AI - Reasoning 
1. Reasoning 

Any  knowledge system  to  do  something,  if  it  has  not been  explicitly told 

how to do  it  then it must reason.  

The system must figure out what it needs to know from what  it  already knows. 

Example   

     If we know :        Robins are birds. All birds have wings.  

     Then if we ask :   Do robins have wings?   

Some reasoning (although very simple) has  to go on answering  the  question. 
 

 1.1 Definitions : 

 • Reasoning  is  the  act  of  deriving a conclusion from certain premises 

using a given methodology.   
 

  ■ Any knowledge system  must reason, if it is required to do something 

which has not been told explicitly . 
  ■ For reasoning, the system must find  out  what it needs to know from 

what it already knows. 
  ■ Example : 

 
If we know : Robins are birds.  

 All birds have wings 

Then if we ask: Do robins have wings? 

To answer this question - some reasoning must go. 
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AI - Reasoning 
  ■ Human reasoning capabilities are divided into three areas: 

   ‡ Mathematical Reasoning – axioms, definitions, theorems, proofs 

   ‡ Logical Reasoning –  deductive,  inductive,  abductive 

   ‡ Non-Logical Reasoning –  linguistic , language 

   These three areas of reasoning, are in every human being, but the 

ability level depends on education, environment and genetics.  
 

   The IQ (Intelligence quotient) is the summation of mathematical

reasoning skill and the logical reasoning.  
 

   The  EQ (Emotional Quotient) depends mostly on non-logical reasoning 

capabilities.  
 

   Note :  The  Logical  Reasoning  is  of  our  concern  in  AI  
05    
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AI - Reasoning 
 • Logical Reasoning    

Logic  is a  language  for  reasoning. It  is  a  collection  of rules called 

Logic arguments,  we use when doing logical reasoning.  
 

Logic reasoning  is  the  process of drawing conclusions from premises 

using rules of inference. 

The  study  of  logic  is  divided  into  formal  and  informal logic.   

The formal logic  is sometimes  called  symbolic logic.    
 

Symbolic logic is the study of symbolic abstractions (construct)  that 

capture  the  formal  features of  logical  inference  by a  formal system. 
 

Formal system  consists  of  two components, a  formal language  plus  a 

set of inference rules. The formal system has axioms.   
 

Axiom is a sentence that is always true within the system.   
 

Sentences are derived using the system's axioms and rules of derivation 

are called  theorems. 
 

06    
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AI - Reasoning 
  ■ Formal Logic   

The Formal logic is  the study of inference with purely formal content, 

ie. where  content  is  made  explicit. 
 

Examples - Propositional logic and Predicate logic. 
 

   ‡ Here the logical arguments are a set of rules for manipulating 

symbols. The  rules  are  of  two types  
    ◊ Syntax rules      :  say how to build meaningful expressions. 

    ◊ Inference rules : say how to obtain true formulas from other 

true formulas. 
 

 
 
 

  ‡ Logic also needs semantics, which says how to assign meaning to 

expressions.  
07     
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AI - Reasoning 
  ■ Informal Logic   

The  Informal logic  is  the study of  natural language arguments.  

   ‡ The analysis of  the argument  structures  in ordinary  language is 

part  of  informal logic. 

 
   ‡ The focus lies in distinguishing good arguments (valid) from bad 

arguments  or fallacies (invalid). 
08    
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AI - Reasoning 
  ■ Formal Systems  

Formal systems can have  following  three  properties : 
 

   ‡ Consistency :  System's  theorems  do not  contradict.  
 

   ‡ Soundness : System's  rules of derivation  will  never  infer 

anything  false,  so long  as  start  is  with  only  true premises.  
 

   ‡ Completeness : There are no true sentences in the system that 

cannot  be  proved  using  the  derivation rules of the system.  
 

   System  Elements  
 

Formal  systems  consist  of  following  elements : 
 

   ‡ A  finite set of symbols for constructing formulae.  

   ‡ A  grammar, is a way of constructing well-formed formulae (wff).  

   ‡ A set of  axioms;  each axiom has to be a wff.  

   ‡ A set  of  inference rules.  

   ‡ A set  of  theorems.  

   A well-formed formulae, wff, is any string generated by a grammar. 

e.g., the sequence of symbols  ((α → β) → (¬ β → ¬ α))  is a WFF 

because  it  is  grammatically  correct  in  propositional  logic. 
09     
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AI - Reasoning 
  ■ Formal Language 

A formal language may be viewed as being  analogous  to  a  collection 

of  words  or  a collection of sentences.  
 

   ‡ 
 

In computer science, a formal language is defined by precise 

mathematical or machine process able formulas. 
 

   ‡ A formal language L is characterized as a set F of finite-length 

sequences of elements drawn from a specified finite set A of 

symbols. 
 

   ‡ Mathematically,  it is an unordered pair  L = { A, F }  

   ‡ If   A   is  words  

then  the set A  is  called  alphabet  of  L,  and  

the  elements  of  F  are  called  words.  
 

   ‡ If   A   is  sentence   

then  the  set A  is  called  the  lexicon  or  vocabulary of  F,  and  

the  elements  of  F  are  then called  sentences. 
 

   ‡ The mathematical theory  that treats  formal languages   in  general 

is  known  as  formal  language  theory. 
10    
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AI - Reasoning 
 • Uncertainty in Reasoning 

  ■ The  world  is an uncertain place;  often the Knowledge is imperfect 

which  causes  uncertainty. Therefore  reasoning  must  be  able to 

operate  under  uncertainty. 

 
  ■ AI systems must have ability to reason under conditions of uncertainty. 

 
    Uncertainties  Desired action 

   ‡ Incompleteness Knowledge  : Compensate for lack of knowledge 

   ‡ Inconsistencies Knowledge   : Resolve ambiguities and contradictions 

   ‡ Changing Knowledge : Update the knowledge base over time 

11      
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AI - Reasoning  
 • Monotonic Logic 

Formal logic is a set of rules for making deductions that seem 

self evident. A Mathematical logic formalizes such deductions with rules 

precise enough to program a computer to decide if an argument is 

valid,   representing  objects  and  relationships  symbolically. 

Examples  

 Predicate logic and the inferences we perform on it.  

 All humans are mortal. Socrates is a human.   
   Therefore Socrates is mortal.  
 

In monotonic reasoning if we enlarge at set of axioms we cannot 

retract  any  existing  assertions  or  axioms.  
 

  ‡ 
 

Most formal logics have a monotonic consequence relation, meaning 

that adding a formula to a theory never produces a reduction of its set 

of consequences.  In other words, a  logic  is  monotonic  if  the  truth 

of  a  proposition  does  not  change  when  new information (axioms) 

are  added. The  traditional  logic  is  monotonic. 

 
  ‡ In mid 1970s, Marvin Minsky and John McCarthy  pointed out   that 

pure classical logic is not adequate to represent the commonsense 

nature of human reasoning. The reason is, the  human reasoning is 

non-monotonic  in  nature. This means, we reach     to conclusions from 

certain premises that we would not reach  if  certain  other  sentences 

are  included  in our premises. 
 

  ‡ The non-monotonic human reasoning is caused by the fact  that  our 

knowledge about the world  is always incomplete and therefore we are 

forced to reason in the absence of complete information. Therefore we 

often revise our conclusions, when new information becomes available. 
  

  ‡ Thus, the need for non-monotonic reasoning in AI was recognized, 

and  several  formalizations of  non-monotonic reasoning. 
 

  Only the non-monotonic logic reasoning is presented in next few slides. 
12      
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AI - Reasoning 
 • Non-Monotonic Logic 

Inadequacy of monotonic logic for reasoning is said in the previous slide.  

A  monotonic  logic  cannot  handle :  

 Reasoning by default :  because consequences may be derived only 

because of lack of evidence of the contrary. 

 Abductive reasoning :   because consequences are only deduced as 

most likely explanations.  

 Belief revision :  because new knowledge may contradict old beliefs. 

 

A non-monotonic logic is a formal logic whose consequence relation

is  not monotonic. A logic  is non-monotonic  if  the truth of a proposition 

may  change  when  new information (axioms)  are  added.  

  ‡ Allows  a  statement  to  be  retracted.  

  ‡ Used  to  formalize  plausible (believable)  reasoning.  

Example 1 : 

Birds typically fly. 
Tweety is a bird. 
-------------------------- 
Tweety (presumably) flies.  

 

  ‡ Conclusion of  non-monotonic  argument  may  not  be  correct. 

Example-2 :  (Ref.  Example-1)  

If  Tweety is a penguin,  it  is  incorrect  to  conclude that  Tweety flies. 

(Incorrect because,  in  example-1,  default rules were applied when 

case-specific information was not available.)  
 

  ‡ All  non-monotonic  reasoning  are  concerned  with  consistency.  

Inconsistency is resolved, by removing the relevant conclusion(s) 

derived by default rules, as shown in the example below.  

Example -3 :  

The truth value (true or false), of propositions such as "Tweety is a bird" 

accepts default that is normally true, such as  "Birds typically fly". 

Conclusions derived was  "Tweety flies". When an inconsistency is 

recognized, only the truth value of the last type is changed.  

13      
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AI - Reasoning 
 1.2 Different Methods of Reasoning  

Mostly three kinds of logical reasoning:  Deduction,  Induction,  Abduction. 
 

  ■ Deduction 

   ‡ Example:  "When it rains, the grass gets wet. It rains. Thus, the 

grass is wet."    

This means in determining the conclusion; it is using rule and its 

precondition to make a conclusion. 
   ‡ Applying a general principle to a special case. 
   ‡ Using theory to make predictions 
   ‡ Usage:  Inference engines,  Theorem provers,  Planning. 

 
  ■ Induction 

   ‡ Example:  "The grass has been wet every time it has rained. Thus, 

when it rains, the grass gets wet." 

This means in determining the rule; it is learning the rule after 

numerous examples of conclusion following the precondition. 
   ‡ Deriving a general principle from special cases 
   ‡ From observations to generalizations to knowledge  
   ‡ Usage: Neural nets, Bayesian nets, Pattern recognition 
14     
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AI - Reasoning 
  ■ Abduction 

   ‡ Example:  "When it rains, the grass gets wet. The grass is wet, it 

must have rained." 

Means determining the precondition; it is using the conclusion and 

the rule to support that the precondition could explain the conclusion.
   ‡ Guessing that some general principle can relate a given pattern of 

cases 
   ‡ Extract hypotheses to form a tentative theory 
   ‡ Usage:  Knowledge discovery,  Statistical methods,   Data mining. 

 
  ■ Analogy 

   ‡ Example:  "An atom, with its nucleus and electrons,  is  like the solar 

system,  with  its  sun and  planets." 

Means analogous; it is illustration of an idea by means of a more 

familiar idea that is similar to it in some significant features. and thus 

said to be analogous to it. 
   ‡ finding a common pattern in different cases 
   ‡ usage: Matching labels, Matching sub-graphs, Matching 

transformations. 
 

  Note: Deductive reasoning and Inductive reasoning are the two most 

commonly used explicit methods of reasoning to reach a conclusion. 
15    
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AI - Reasoning 
 • More about  different methods of Reasoning  

  ■ Deduction  Example  

Reason from facts and general principles to other facts.  

Guarantees  that  the  conclusion  is  true.  
   ‡ Modus Ponens  : a valid form of argument affirming the antecedent.
    ◊ If it is rainy, John carries an umbrella 
     It is rainy 

-----------------                                          (doted line read as "therefore") 
John carries an umbrella.  
 

    ◊ If p then q 
     p 

------- 

q 
 

   ‡ Modus Tollens : a valid form of argument denying the consequent. 
 

    ◊ If it is rainy, John carries an umbrella 
     John does not carry an umbrella 

-----------------                                           (doted line read as "because") 
It is not rainy 
 

    ◊ If p then q 
 

     not q 
------- 

not p 
 

16      
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AI - Reasoning 
  ■ Induction  Example 

Reasoning from many instances to all instances.  
 

   ‡ Good Movie 

    Fact You have liked all movies starring Mery. 
    Inference You will like her next movie. 

 
   ‡ Birds 

    Facts: Woodpeckers, swifts, eagles, finches have four 

toes on each foot. 
    Inductive Inference All birds have 4 toes on each foot. 
    (Note: partridges have only 3).  

 
   ‡ Objects  

    Facts Cars, bottles, blocks fall if not held up. 
    Inductive Inference If not supported, an object will fall. 
    (Note: an unsupported helium balloon will rise.) 
   ‡ Medicine 

    Noted People who had cowpox did not get smallpox. 
 

    Induction: Cowpox prevents smallpox. 
 

   Problem :  Sometime inference is correct, sometimes not correct. 
 

   Advantage :  Inductive inference may be useful even if not correct. 

It  generates  a  proposition  which  may  be  validated  deductively. 
17      
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AI - Reasoning 
  ■ Abduction   Example 

Common form of human reasoning– "Inference to the best explanation". 

In Abductive  reasoning  you make an assumption which, if true, 

together with your general knowledge, will explain the facts. 
  

   ‡ Dating 
  

    Fact: Mary asks John to a party.  
    Abductive Inferences Mary likes John. 

John is Mary's last choice. 

Mary wants to make someone else jealous. 

 
   ‡ Smoking house 

 

    Fact: 
 

A large amount of black smoke is coming 

from  a home.  

    Abduction1:  the house is on fire.  

    Abduction2:  bad cook.  

 
   ‡ Diagnosis 

 
    Facts: 

 
A thirteen year-old boy has a sharp pain 

in his right side, a fever, and a high white 

blood count.  
    Abductive  inference  

 
Appendicitis.  

   Problem:        Not always correct;  many explanations possible. 
   Advantage :    Understandable conclusions. 
18       

 
  
 



R
C
 C

hak
ra

bort
y,

 w
w

w
.m

yr
ea

der
s.

in
fo





AI - Reasoning 
  ■ Analogy  Example 

Analogical  Reasoning  yields  conjectures,  possibilities. 

If A is like B in some ways, then infer A is like B in other ways. 

 
   ‡ Atom and Solar System 

 
    Statements: An atom, with its nucleus and electrons, is like the 

solar system, with its sun and planets.  
    Inferences:  Electrons travel around the nucleus.  
     Orbits are circular.  
           ? Orbits are all in one plane.  
           ? Electrons have little people living on them.  
    Idea: Transfer information from known (source)  

to  unknown (target).  
 

   ‡ Sun and Girl 
 

    Statement: She is like the sun to me.  
    Inferences:  She lights up my life.  
     She gives me warmth.  
           ? She is gaseous.  
           ? She is spherical.  
   ‡ Sale man Logic 

 
    Statement: John has a fancy car and a pretty girlfriend.  
    Inferences: 

 
If Peter buys a fancy car, 

Then Peter will have a pretty girlfriend. 

 
   Problems :     Few analogical inferences are correct 
   Advantage :   Suggests novel possibilities. Helps to organize information.
19     
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AI - Reasoning 
 1.3 Sources of Uncertainty in Reasoning 

 
In many problem domains it is not possible to create complete, consistent 

models of the world. Therefore agents (and people) must act in uncertain 

worlds (which the real world is). We want an agent to make rational 

decisions even when there is not enough information to prove that an action 

will work.  
 

  ■ Uncertainty is omnipresent because of  
 

   ‡ Incompleteness  
 

   ‡ Incorrectness 
 

  ■ Uncertainty in Data or Expert Knowledge 
 

   ‡ Data derived from defaults/assumptions 
 

   ‡ Inconsistency between knowledge from different experts. 
 

   ‡ “Best Guesses” 
 

  ■ Uncertainty in Knowledge Representation 
 

   ‡ Restricted model of the real system. 
 

   ‡ Limited expressiveness of the representation mechanism.  
 

  ■ Uncertainty in Rules or Inference Process 
 

   ‡ Incomplete because too many conditions to be explicitly enumerated
 

   ‡ Incomplete because some conditions are unknown 
 

   ‡ Conflict Resolution 
 

20      
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AI - Reasoning 
 1.4 Reasoning  and  KR  

To certain extent, the reasoning depends on the way the knowledge is 

represented  or  chosen. 
 

  ■ A good knowledge representation scheme allows easy, natural and 

plausible (credible) reasoning. 
 

  ■ Reasoning methods are broadly identified as : 
 

   ‡ Formal reasoning : Using basic rules of inference with logic 

knowledge representations. 
   ‡ Procedural reasoning : Uses procedures that specify how to 

perhaps solve sub problems. 
   ‡ Reasoning by analogy : This is as Human do, but more difficult 

for AI systems. 
   ‡ Generalization and  

abstraction 
: This is also as Human do; are basically 

learning and understanding methods. 
   ‡ Meta-level reasoning : Uses knowledge about what we know and 

ordering them as per importance. 
 

    ■ Note : What ever may be the reasoning method,  the AI model  must 

be able to reason under conditions of uncertainty mentioned before.    
21     
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AI - Reasoning 
 1.5 Approaches to Reasoning 

There are three different approaches to reasoning under uncertainties.  

  ‡ Symbolic reasoning 

  ‡ Statistical reasoning 

  ‡ Fuzzy logic reasoning 

  The first two approaches are presented in the subsequent slides. 

22      
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AI - Symbolic Reasoning 
2. Symbolic Reasoning 

The basis  for  intelligent mathematical software is the integration of the  "power 

of symbolic mathematical tools" with the suitable "proof technology".  

 
Mathematical reasoning  enjoys a property called monotonicity,  that says, 

      "If a conclusion follows from given premises  A, B, C, …  

       then it also follows from any larger set of premises, as long as the 

       original premises  A, B, C, …  are included." 

 
Human reasoning is not monotonic.   

People arrive to conclusions only tentatively, based on partial or incomplete 

information, reserve the right to retract those conclusions while they learn new 

facts. Such reasoning is non-monotonic, precisely because the set of accepted 

conclusions have become smaller when the set of premises is expanded. 
 

23   



R
C
 C

hak
ra

bort
y,

 w
w

w
.m

yr
ea

der
s.

in
fo





AI - Symbolic Reasoning 
 2.1 Non-Monotonic Reasoning 

Non-Monotonic reasoning is a generic name to a class or a specific theory of 

reasoning. Non-monotonic reasoning attempts to formalize reasoning with 

incomplete information  by classical logic systems.  
 

  The Non-Monotonic reasoning are of the  type 

  ■ Default reasoning  

  ■ Circumscription  

  ■ Truth Maintenance Systems  

24    
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AI - Symbolic Reasoning 
 • Default Reasoning 

This is a very common from of non-monotonic reasoning. The conclusions 

are drawn  based on what is most  likely to be true.  

There are two approaches, both are  logic type,  to Default reasoning :  

one is   Non-monotonic  logic  and  the other is  Default logic.  

 
  ■ Non-monotonic  logic 

It has already been defined. It says, "the truth of a proposition may 

change when new information (axioms) are added and a logic may be 

build to allows the statement to be retracted." 

 
Non-monotonic logic  is  predicate logic with one  extension  called 

modal operator  M  which  means “consistent with everything we know”.

The purpose of  M  is  to allow consistency. 
 

   A way to define  consistency  with  PROLOG  notation is : 

To show that fact P is true, we attempt to prove  ¬P.  

If we fail we may say that P is consistent since ¬P is false. 

     
   Example :  

    ∀ x : plays_instrument(x) ∧  M manage(x) → jazz_musician(x) 

States that for all x,  the x  plays  an instrument  and  if  the fact 

that x can manage is  consistent  with all other knowledge then we 

can conclude that x is a jazz musician. 
   

25      
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AI - Symbolic Reasoning 
  ■ Default Logic 

Default logic initiates a new inference rule:               where 
   

A is known as the prerequisite, 

B as the justification, and 

C as the consequent.  

        
   ‡ Read the above inference rule as:  

" if A, and  if it is consistent with the rest of what is known to 

assume  that B,  then conclude that  C ". 
 

   ‡ The rule says that given the prerequisite, the consequent can be 

inferred,  provided  it  is  consistent  with  the rest of the data. 
 

   ‡ Example :  Rule  that  "birds typically fly"  would be represented as 

                              which says  

 

" If x is a bird and the claim that  x  flies  is  consistent with 

what  we  know,  then  infer  that  x  flies". 
 

   ‡ Note : Since, all we know about Tweety is that : 

Tweety  is  a  bird,  we  therefore  inferred  that  Tweety flies.  
 

   ‡ The idea behind non-monotonic reasoning is to reason with first 

order logic, and if an inference can not be obtained then use the set 

of  default  rules  available  within  the first  order formulation. 
26     
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AI - Symbolic Reasoning 
    [continuing  default logic] 

   ‡ Applying Default Rules :  

While applying default rules, it is necessary to check their 

justifications for consistency, not only with  initial data, but also with 

the consequents of any other default rules that may be applied. The 

application of one rule may thus block the application  of  another. 

To solve this problem, the concept of default theory was extended. 
 

   ‡ Default Theory  

It consists of  a  set  of premises  W  and  a set of default rules D. 

An extension for a default theory  is a set of sentences E which can 

be derived from W by applying as many rules of D as possible 

(together with the rules of deductive inference) without generating 

inconsistency. 

Note : D the set of default rules has a unique syntax of the form  
 
                                                           where 
                                 
   
 

 is the prerequisite of the default rule 

 
 

is the consistency test of the default rule 

 is the consequent of the default rule 

         
    The rule can be read as  

For all individual  x1 . . . .  xm       

    If              is believed    and  

    If   each of           is consistent  with our beliefs,  

    Then              may be believed.  
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AI - Symbolic Reasoning 
    [continuing  default logic] 

 
    Example :   

A Default Rule  says  " Typically an American adult owns a car ". 
 

American(x) ∧  Adult(x) : M((∃ y) . car(y) ∧  owns(x,y)) 

((∃ y) . car(y) ∧  owns(x,y)) 

 

The rule is  explained below  :  

The rule is only accessed if we wish to know whether or not John 

owns a car then an answer can not be deduced from our current 

beliefs.  
 

This default rule is applicable if we can prove from our beliefs that 

John is an American and an adult, and believing that there is some 

car  that is owned by John does not lead to an  inconsistency.  
 

If these two sets of premises are satisfied, then the rule states that 

we can conclude that John owns a car.  
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AI - Symbolic Reasoning 
 • Circumscription 

Circumscription is a non-monotonic logic to formalize the common sense

assumption. Circumscription is a formalized rule of conjecture (guess) that 

can be used along with the rules of inference of first order logic. 
 

  Circumscription involves formulating rules of thumb with "abnormality"

predicates and then restricting the extension of these predicates,

circumscribing them, so that they apply to only those things to which they 

are currently known.   
  ■ Example :   Take the case of   Bird  Tweety 
   The rule of thumb is that "birds typically fly" is conditional. The 

predicate  "Abnormal" signifies abnormality with respect to flying ability. 
  

   Observe that  the  rule    ∀ x(Bird(x) & ¬ Abnormal(x) → Flies))   does 

not  allow us  to infer that "Tweety flies",  since we do not know that 

he is  abnormal with respect to flying ability.  
 

But if  we add axioms which circumscribe the abnormality predicate to 

which they are currently known say "Bird  Tweety"  then the inference 

can be drawn. This inference is non-monotonic.  

29      
 



R
C
 C

hak
ra

bort
y,

 w
w

w
.m

yr
ea

der
s.

in
fo





AI - Symbolic Reasoning 
 • Truth Maintenance Systems 

 
Reasoning Maintenance System (RMS) is a critical part of a reasoning

system. Its purpose is to assure that inferences made by the reasoning 

system (RS) are valid.  
 

The RS provides the RMS with information about each inference it performs, 

and in return the RMS provides the RS with information about the whole set 

of inferences. 
 

Several implementations of RMS have been proposed for non-monotonic 

reasoning. The important ones are  the :   

 Truth Maintenance Systems (TMS) and  

 Assumption-based Truth Maintenance Systems (ATMS). 
 

The TMS maintains the consistency of a knowledge base as soon as new 

knowledge is added. It considers only one state at a time so it is not 

possible to manipulate environment. 
 

The ATMS  is intended to maintain multiple environments. 
 

The typical functions of TMS are presented in the next slide. 
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AI - Symbolic Reasoning 
  [continuing  Truth Maintenance Systems] 

 
  Truth Maintenance Systems (TMS)   

A truth maintenance system maintains consistency in knowledge 

representation of a knowledge base.  

The functions of TMS are to : 
 

  ■ Provide justifications for conclusions 

When a problem solving system gives an answer to a user's query, an 

explanation of that answer is required;  

Example : An  advice to  a stockbroker  is  supported by an explanation 

of the reasons for that advice. This  is constructed by the  Inference 

Engine (IE)  by  tracing  the  justification  of  the  assertion. 
 

  ■ Recognize inconsistencies 

The Inference Engine (IE) may tell the TMS that some sentences are 

contradictory. Then, TMS  may find that all those sentences are believed 

true, and reports to the IE which can eliminate the inconsistencies by 

determining the assumptions used and changing them appropriately.  

Example : A statement that either Abbott, or Babbitt, or Cabot is guilty 

together  with  other  statements  that Abbott is not guilty,  Babbitt is 

not guilty, and  Cabot  is  not  guilty, form a contradiction. 
 

  ■ Support default reasoning 

In the absence of any firm knowledge,  in many situations we want to 

reason from default assumptions.  

Example : If  "Tweety is a bird", then until told otherwise, assume that 

"Tweety flies"  and  for  justification  use  the  fact  that "Tweety  is  a 

bird"  and  the  assumption  that  "birds fly". 
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AI - Symbolic Reasoning 
 2.2 Implementation Issues 

The issues and weaknesses related to implementation of  non-monotonic 

reasoning in problem solving are : 
 

  ■ How to derive exactly those non-monotonic conclusion that are relevant 

to solving the problem at hand while not wasting time on those that are 

not necessary. 
  ■ How to update our knowledge incrementally as problem solving 

progresses.  
  ■ How to over come the problem where more than one interpretation of 

the known facts is qualified or approved by the available inference rules.
  ■ In general the theories  are not computationally effective, decidable or 

semi decidable. 
 

  The solutions offered, considering the reasoning processes into two parts : 

 one, a problem solver that uses whatever mechanism it happens to have 

to draw conclusions as necessary, and  

 second, a truth maintenance system whose job is to maintain 

consistency in knowledge representation of a knowledge base.  
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AI - Statistical Reasoning 
3. Statistical Reasoning :  

 
In the logic based approaches described, we have assumed that everything is 

either believed false or believed true.  
 

However, it is often useful to represent the fact that we believe such that 

something is probably true, or true with probability (say) 0.65.  
 

This is useful for dealing with problems where there is randomness and 

unpredictability (such as in games of chance) and also for dealing with problems 

where we could, if we had sufficient information, work out exactly what is true. 
 

To do all this in a principled way requires techniques for probabilistic reasoning. 

In this section, the Bayesian Probability Theory is first described and then 

discussed how uncertainties  are  treated. 

 
33  

 



R
C
 C

hak
ra

bort
y,

 w
w

w
.m

yr
ea

der
s.

in
fo





AI - Statistical Reasoning 
 • Recall  glossary  of  terms  

  ■ Probabilities :    

Usually, are descriptions of the likelihood of some event occurring 

(ranging from 0 to 1).  
 

  ■ Event :   

One or more outcomes of a probability experiment .  
 

  ■ Probability Experiment :   

Process which leads to well-defined results call outcomes.  
 

  ■ Sample Space :   

Set of all possible outcomes of a probability experiment.  
 

  ■ Independent Events :  

Two events, E1  and  E2,  are  independent  if  the fact  that  E1 occurs 

does  not  affect  the  probability  of  E2  occurring.  
 

  ■ Mutually Exclusive Events :   

Events  E1, E2, ..., En  are said to be mutually exclusive if 

the occurrence of any one of them automatically implies the 

non-occurrence  of  the  remaining n − 1  events.  
 

  ■ Disjoint Events :   

Another  name  for  mutually  exclusive  events.  
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AI - Statistical Reasoning 
  ■ Classical Probability :  

Also called a priori theory of probability.  

The probability of event A = no of possible outcomes f divided by the 

total no of possible outcomes n ;   ie., P(A) = f / n.  

Assumption:  All possible outcomes are equal likely.  

 
  ■ Empirical Probability :  

Determined analytically, using knowledge about the nature of the 

experiment rather than through actual experimentation.  

 
  ■ Conditional Probability :  

The probability of some event A, given the occurrence of some other 

event B. Conditional probability is written P(A|B), and read as "the 

probability of  A, given B ". 

 
  ■ Joint probability :   

The probability of two events in conjunction.  It is the probability of both 

events together. The joint probability of A and B is written P(A ∩ B) ; 

also written as  P(A, B).  

 
  ■ Marginal Probability :  

The probability of one event, regardless of the other event. The 

marginal probability of A is written P(A), and the marginal probability of 

B is written P(B).  
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AI - Statistical Reasoning 
 • Examples  

  ■ Example 1  

Sample  Space  -  Rolling two dice  

The sums can be  { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }.  

Note that each of these are not equally likely. The only way to get a 

sum 2 is to roll a 1 on both dice, but can get a sum 4 by rolling out 

comes  as  (1,3),  (2,2),  or  (3,1).  

Table below illustrates a sample space for the sum obtain.  

Second Dice  
First dice 1 2 3 4 5 6 

1 2 3 4 5 6 7 
2 3 4 5 6 7 8 
3 4 5 6 7 8 9 
4 5 6 7 8 9 10 
5 6 7 8 9 10 11 
6 7 8 9 10 11 12 

  

   Classical Probability 
 

Table below illustrates frequency and distribution for the above sums.  

Sum 2 3 4 5 6 7 8 9 10 11 12 

Frequency 1 2 3 4 5 6 5 4 3 2 1 

Relative frequency 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 1/36 1/36

 

The classical probability is the relative frequency of each event.  

Classical probability  P(E) = n(E) / n(S);  P(6) = 5 / 36,  P(8) = 5 / 36 
 
 

   Empirical Probability 

The empirical probability of an event is the relative frequency of a 

frequency distribution based upon observation  P(E) = f / n 
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AI - Statistical Reasoning 
  ■ Example 2  

Mutually Exclusive Events (disjoint) :  means nothing in common 

Two events  are  mutually  exclusive  if  they  cannot  occur  at  the 

same time.  

(a)   If  two  events  are  mutually  exclusive,  

      then probability of both occurring at same time is  P(A and B) = 0 

 

(b)  If  two  events are mutually exclusive ,  

      then the probability of either occurring is  P(A or B) = P(A) + P(B) 

 

Given  P(A)= 0.20,  P(B)= 0.70,   where  A  and  B  are  disjoint  

then    P(A and B) = 0  

The table below indicates intersections  ie   "and"  of each pair of 

events.  "Marginal" means total;  the values  in bold  means  given;  the 

rest of the values are obtained by addition and subtraction. 

 
 B B' Marginal

A 0.00 0.20 0.20 

A' 0.70 0.10 0.80 

Marginal 0.70 0.30 1.00 

   

   Non-Mutually Exclusive Events 

The non-mutually exclusive events have some overlap.  

When  P(A) and P(B) are added,  the  probability of  the  intersection 

(ie. "and" )  is added twice, so  subtract once.    

P(A or B) = P(A) + P(B) - P(A and B) 

Given :   P(A) = 0.20,    P(B) = 0.70,    P(A and B) = 0.15 
 

 B B' Marginal

A 0.15 0.05 0.20 

A' 0.55 0.25 0.80 

Marginal 0.70 0.30 1.00 
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AI - Statistical Reasoning 
  ■ Example 3   

Factorial ,  Permutations  and  Combinations 

Factorial 

The factorial of an integer n ≥ 0  is  written  as   n! .  

     n! = n × n-1 × .  .  . × 2 × 1.  and  in  particular,  0! = 1. 

It is,  the number of permutations of n distinct objects;   

e.g., no of ways to arrange 5 letters  A, B, C, D and E  into a word is 5! 

     5!   =   5  x   4     x    3    x 2  x 1 = 120 

      N!  =   (N) x (N-1) x (N-2) x . . .  x (1)   

      n!   =   n (n - 1)! ,   0! = 1 

 
[continuing  next slide] 
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AI - Statistical Reasoning 
   [continuing  example 3] 

 
   Permutation  

The permutation is arranging elements (objects or symbols) into 

distinguishable sequences. The ordering of the elements is important. 

Each unique ordering is a permutation. 

Number of permutations of ‘ n ’ different things taken ‘ r ’ at a time is 

 given by                   .   

 
(for convenience in writing,  here  after  the  symbol  Pn

r  is  written as  

nPr  or  P(n,r)  ) 
 

Example 1  

Consider a total of 10 elements, say integers {1, 2, ..., 10}.  

A permutation of 3 elements from this set is (5, 3, 4).   

Here n = 10 and r = 3.  

The number of such unique sequences are calculated as  P(10,3) = 720.
 

Example 2  

Find  the  number of ways  to  arrange  the  three  letters  in  the  word 

CAT  in  to  two-letter  groups  like CA  or AC and no repeated letters.   

This  means   permutations  are  of  size  r = 2  taken  from  a  set  of 

size  n = 3.   so  P(n, r) =  P(3,2) = 6.   

The ways are listed as  CA   CT   AC   AT   TC   TA. 

 

Similarly, permutations of size r = 4,  taken from a set of size n = 10, 
   
                                    10!             10!             10x9x8x7x6x5x4x3x2x1 
P(n, r) =  P(10,4) =               =              =    
                                (10 – 4)!         6!                      6x5x4x3x2x1  
   
[continuing  next slide] 
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AI - Statistical Reasoning 
   [continuing  example 3] 

 
   Combinations 

Combination means selection of elements (objects or symbols).  

The ordering of the elements has no importance.  

Number of Combination of ‘ n ’ different things, taken ‘ r ’ at a time is  

 
                                      W                  here      
  

       r    is the size of each combination of elements,  

       n   is the total size of elements from which elements are permuted,  

       !    is the factorial operator. 

(for convenience in writing, here after the symbol  Cn
r  is written as

nCr  or  C(n,r)  ) 
 

Example  

Find the number of combinations of size 2 without repeated letters that 

can be made from the three letters in the word CAT, order doesn't 

matter;  AT is the same as TA.   

This means  combinations of size r =2 taken from a set of size n = 3,   

so  C(n , r) = C(3 , 2) = 3 .  The  ways  are  listed as  CA  CT  CA .   

Using  the  formula  for  finding  the number of combinations of

r objects  from  a set of n objects is: 

                                       n!               3!             3 x 2 x 1            6 
C(n, r)  =  C(3,2)  =                 =               =                       =           = 3 
                                  r! (n-r)!        2! X 1!       2 x 1 X (1!)         2 
 
If  n  is large  then  finding n!  becomes  difficult.  The alternate way is 

given below 
 

Find combinations of size  r = 4,  taken  from  a set of size  n = 10, 
 
                                       P(10,4)              10!                      10! 
C(n, r)  =   C(10,4)   =                    =                     =    
                                           4!                4! X 6!             4! X (10 – 4)! 
 
                                       10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 
                                 =    
                                        4 x 3 x 2 x 1  (6 x 5 x 4 x 3 x 2 x 1)  
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AI - Statistical Reasoning 
 3.1 Probability and  Bayes’ Theorem 

In probability theory, Bayes' theorem relates  the  conditional  and 

marginal  probabilities  of  two  random  events. 
 

 • Probability :   The  Probabilities  are  numeric  values  between 0 and 1

(both inclusive)  that  represent  ideal  uncertainties (not beliefs).  
 

  ■ Probability of event A  is  P(A)  
 
                   instances of the event A              

                          total  instances 

P(A) = 0 indicates total uncertainty in A, 

P(A) = 1 indicates total certainty and  

0< P(A) < 1 values in between tells degree of uncertainty  

     
   Probability Rules : 

‡ All probabilities are between 0 and 1 inclusive 0 <= P(E) <= 1. 

‡ The sum of all the probabilities in the sample space is 1.  

‡ The probability of an event which must occur is 1.  

‡ The probability of the sample space is 1. 

‡ The probability of any event which is not in the sample space is zero. 

‡ The probability of an event not occurring is P(E') = 1 - P(E)  

         
   Example 1 :  A  single 6-sided  die  is rolled.  

What is the probability of each outcome?  

What is the probability of rolling an even number?  

What is the probability of rolling an odd number?  

The possible outcomes of this experiment are 1, 2, 3, 4, 5, 6. 

The Probabilities are :  

P(1)       =     No of ways to roll 1 / total no of sides   =  1/6 

P(2)       =     No of ways to roll 2 / total no of sides   =  1/6 

P(3)       =      No of ways to roll 3 / total no of sides   =  1/6 

P(4)       =     No of ways to roll 4 / total no of sides   =  1/6 

P(5)       =     No of ways to roll 5 / total no of sides   =  1/6 

P(6)       =      No of ways to roll 6 / total no of sides   =  1/6 

P(even)  =     ways to roll even no / total no of sides  =  3/6 = 1/2 

P(odd)    =     ways to roll odd   no / total no of sides  =  3/6 = 1/2 
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AI - Statistical Reasoning 
   Example 2 :   Roll  two  dices 

 

Each dice shows one of 6 possible numbers;  

Total  unique rolls is 6 x 6 = 36; 

List of the joint possibilities for the two dices are: 

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) 
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) 
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) 
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) 
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) 
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) 

 

Roll two dices;   

The  rolls  that  add up to  4  are   ((1,3), (2,2), (3,1)).  

The probability of rolling dices  such  that  total of 4  is 3/36 = 1/12

and  the  chance  of  it  being  true  is  (1/12) x 100 =  8.3%. 
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AI - Statistical Reasoning 
  ■ Conditional probability   P(A|B)  

A conditional probability is  the probability of an event  given that 

another  event  has  occurred.  
 

   Example :  Roll two dices. 

What  is  the  probability  that  the  total  of two dice will be greater 

than 8  given  that  the  first  die is  a  6 ? 

First  List of the joint possibilities for the two dices are: 

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) 
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) 
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) 
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) 
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) 
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) 

 
There are 6 outcomes for which  the  first  die is a 6, and of these, there 

are 4 outcomes that total more than 8 are (6,3;  6,4; 6,5; 6,6). 

The  probability of  a  total > 8  given  that  first  die is  6  is   

therefore  4/6 = 2/3 . 

This probability is written as:    P(total>8 | 1st die = 6) = 2/3  

                                                 event       condition 

 

Read  as  "The probability that  the  total is > 8  given  that  die  one     

is  6  is  2/3." 

 
Written as  P(A|B)  ,  is  the probability of  event  A  given  that  the 

event B  has  occurred. 
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AI - Statistical Reasoning 
  ■ Probability of  A  and  B  is  P(A and B)  

The  probability  that  events  A  and  B  both  occur.  

Note :  Two events  are independent if the occurrence of one is 

unrelated  to  the  probability of  the occurrence of  the other.  
 

   ‡ If  A  and  B  are  independent 

then  probability  that  events  A  and  B  both  occur  is:  

            P(A and B) = P(A) x P(B) 

ie  product  of  probability of  A  and  probability of  B. 
 

   ‡ If  A  and  B  are  not  independent 

then  probability  that  events  A  and  B  both  occur is:  

            P(A and B) = P(A) x P(B|A)   where  

P(B|A)  is  conditional probability  of  B  given  A 

      
    Example 1:  P(A and B)  if events A and B are independent 

 Draw a card from a deck , then replace it, draw another card.  

 Find probability that 1st card is Ace of clubs (event A) and 2nd

card is any Club (event B).  

 Since there is only one Ace of Clubs, therefore  probability   

P(A) = 1/52. 

 Since there are 13 Clubs,  the probability P(B) = 13/52 = 1/4. 

 Therefore, P(A and B) = p(A) x p(B) = 1/52 x 1/4 = 1/208. 
 

      
    Example 2:  P(A and B)  if events A and B are not independent 

 

 Draw a card from a deck, not replacing it, draw  another card.  

 Find probability that both cards are Aces ie the 1st card is Ace 

(event A) and the 2nd card is also Ace (event B). 

 Since 4 of 52 cards are Aces, therefore  probability  P(A) = 4/52 

= 1/13. 

 Of the 51 remaining cards, 3 are aces. so, probability of 2nd 

card is also Ace (event B)  is  P(B|A)  =  3/51 = 1/17. 

 Therefore,   P(A and B) =   p(A) x p(B|A) = 1/13 x 1/17 = 1/221 
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AI - Statistical Reasoning 
  ■ Probability of A or B   is  P(A or B) 

The probability of either event  A  or event  B  occur.  

Two events  are  mutually  exclusive  if  they  cannot  occur  at  same time.  

   ‡ If  A  and  B  are  mutually exclusive 

then probability that events  A  or  B  occur is:  

            P(A or B) = p(A) + p(B) 

ie  sum of  probability of  A  and  probability  of  B 
   ‡ If  A and B  are  not  mutually  exclusive 

then  probability  that  events  A and B  both  occur  is:  

            P(A or B) = P(A) x P(B|A) – P(A and B)  where  

P(A and B) is probability that events A and B both occur while

events A and B are independent and P(B|A) is conditional 

probability of  B  given  A. 
    Example 1:  P(A or B) if events A or B are mutually exclusive 

 Rolling a die. 

 Find probability of getting either, event  A as 1 or event B as 6? 

 Since it is impossible to get both,  the event A as 1 and event B 

as 6 in same roll, these two events are mutually exclusive.  

 The probability P(A) = P(1) = 1/6  and P(B) = P(6) = 1/6 

 Hence probability of either event A  or  event B  is  : 

 P(A or B)  =   p(A) + p(B)  = 1/6 + 1/6  = 1/3 

    Example 2:  P(A or B)  if events A or B are not mutually exclusive 

 Find probability that a card from a deck will be either an 

Ace  or a  Spade? 

 probability P(A)  is  P(Ace) = 4/52  and P(B)  is  P(spade) = 13/52.

 Only way in a single draw to be Ace and Spade  is Ace of 

Spade;  which is only one, so probability  P(A and B)  is

P(Ace and Spade) = 1/52. 

 Therefore, the probability of event A or B is : 

         P(A or B) = P(A) + P(B) – P(A and B)  

                         = P(ace) + P(spade) - P(Ace and Spade)  

                         = 4/52    + 13/52        - 1/52   = 16/52 = 4/13 
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AI - Statistical Reasoning 
  Summary of symbols & notations  

  A U B (A union B) 'Either A or B occurs or both occur' 

  A ∩ B (A intersection B) 'Both A and B occur' 

  A ⊆   B (A is a subset of B) 'If A occurs, so does B' 

  A'  Ā 'Event A does not occur' 

  Φ (the empty set) An impossible event 

  S (the sample space) An event that is certain to occur 

  A ∩ B = Φ Mutually exclusive Events 

  P(A)  Probability that event A occurs 

  P(B)  Probability that event B occurs 

  P(A U B) Probability that event A or event B occurs 

  P(A ∩ B) Probability that event A and event B occur 

  P(A ∩ B) = P(A) . P(B) Independent events 

  P(A ∩ B) = 0 Mutually exclusive Events 

  P(A U B) = P(A) + P(B) – P(AB) Addition rule;   

  P(A U B) = P(A) + P(B) – P(A) . P(B) 

P(A U B) = P(A) + P(B) – P(A ∩ B) 

P(A U B) = P(A) + P(B) – P(B|A).P(A)  

Addition rule;  independent events 

  P(A U B) = P(A) + P(B)  Addition rule;  mutually exclusive Events 

  A|B           (A   given B) "Event A will occur given that event B has 
 occurred" 
 

  P(A|B) Conditional probability that event A will
occur  given that event B has occurred 
already 
 

  P(B|A) Conditional probability that event B will 
occur  given that event A has occurred 
already 
 

  P(A ∩ B) = P(A|B).P(B)      or 
P(A ∩ B) = P(B|A).P(A)   
              

Multiplication rule 

  P(A ∩ B) = P(A) . P(B) Multiplication rule; independent events; 
ie probability of joint events A and B  
 

  P(A|B) = P(A ∩ B) / P(B) Rule to determine a conditional probability 

from unconditional probabilities. 
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AI - Statistical Reasoning 
 • Bayes’ Theorem 

Bayesian  view  of  probability  is  related  to  degree of belief.  

It is a measure of the plausibility of an event given incomplete knowledge. 

 
Bayes' theorem is also known as Bayes' rule or Bayes' law, or called 

Bayesian reasoning.  

 
The probability of an event A conditional on another event B  ie  P(A|B) is

generally different from probability of B conditional on A  ie P(B|A).  

 
 There is a definite relationship between the two, P(A|B) and P(B|A), 

and Bayes' theorem is the statement of that relationship. 
 

 Bayes theorem is a way to calculate P(A|B) from a knowledge of P(B|A).
  

 Bayes' Theorem is a result that allows new information to be used 

to update the conditional probability of an event. 

[Continued in next slide] 
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AI - Statistical Reasoning 
   [Continued from  previous  slide]  

 
  ■ Bayes' Theorem 

Let  S  be a sample space. 

Let  A1,   A2, ... ,   An  be a set of mutually exclusive events from S. 

Let  B  be any event from the same S, such that P(B) > 0.  

Then Bayes' Theorem  describes  following  two  probabilities :  

                              P(Ak ∩ B)   
P(Ak|B)  =                                                                 and 
               P(A1 ∩ B) + P(A2 ∩ B) + - - - - + P(An ∩ B) 

 
by invoking the fact  P(Ak ∩ B) = P(Ak).P(B|Ak)  the probability  
 
                              P(Ak).P(B|Ak) 
P(Ak|B)  =                                              
                   P(A1).P(B|A1) + P(A2).P(B|A2)+ - - - - + P(An).P(B|An) 

 
    
       Applying  Bayes' Theorem :    

Bayes' theorem  is  applied  while  following  conditions exist.  
 

   ‡ the sample space  S  is partitioned into a set of mutually exclusive 

events   {A1,  A2, . . . . . ,  An }.  

 
   ‡ within  S,  there exists an event  B,  for which  P(B) > 0.  

 
   ‡ the goal is to compute a conditional probability of the form : 

P(Ak|B).  
 

   ‡ you  know  at  least  one  of  the  two  sets  of   probabilities 

described  below  
    ◊ P(Ak ∩ B)  for  each  Ak  

 
    ◊ P(Ak)  and  P(B|Ak)  for  each  Ak  

 
   The  Bayes' theorem is  best understood through an example below. 
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AI - Statistical Reasoning 
  Example 1:    Applying  Bayes' Theorem 

Problem :  Marie's marriage is tomorrow.   

 in recent years,  each year it has rained only 5 days.  

 the weatherman has predicted rain for tomorrow.  

 when it actually rains, the weatherman correctly forecasts rain 90% of 

the time.  

 when it doesn't rain, the weatherman incorrectly forecasts rain 10% of 

the time. 

The question :  What  is  the  probability  that  it  will  rain  on the day of 

Marie's wedding?  
 

Solution :  The sample space  is  defined by two  mutually  exclusive  events 

– "it rains"  or  "it  does not rain".  Additionally, a third  event  occurs  when 

the "weatherman predicts rain".  

The events and probabilities are stated below.  
  ◊ Event A1 : rains on Marie's wedding.  

  ◊ Event A2 : does not rain on Marie's wedding 

  ◊ Event B : weatherman predicts rain.  

  ◊ P(A1) = 5/365 =0.0136985 [Rains 5 days in a year.]  

  ◊ P(A2) = 360/365 = 0.9863014 [Does not rain 360 days in a year.]  

  ◊ P(B|A1) = 0.9 [When it rains, the weatherman predicts rain 90% time.]  

  ◊ P(B|A2) = 0.1 [When it does not rain, weatherman predicts rain 10% time.] 

  We want to know P(A1|B), the probability that  it will rain on the day of 

Marie's wedding, given a forecast for rain by the weatherman.  

The answer can be determined from Bayes' theorem, shown below.  

                          P(A1).P(B|A1)                             (0.014)(0.9) 
P(A1|B)  =                                               = 
                  P(A1).P(B|A1)+P(A2).P(B|A2)     [(0.014)(0.9)+(0.986)(0.1)]    

                 =  0.111 
 

  So, despite the weatherman's prediction, there is a good chance that Marie 

will not get rain on at her wedding. 
  Thus Bayes theorem is used to calculate conditional probabilities.  
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AI - Statistical Reasoning 
  Example 2:    Applying  Bayes' Theorem 
  ‡ Let  S  be a sample space.  

  ‡ Let  E1  and  E2  be  two  mutually exclusive  events  forming  a partition 

of  the  sample  space  S 

  ‡ Let  E  be any event of the sample space such that P(E) ≠ 0. 

   

 
    

 
    

  Recall from Conditional Probability   

The notation P(E1 | E) means "the probability of the event E1 given that E  

has already occurred". 
 

  ‡ The sample space S  is described  as  "the integers 1 to 15"  and is 

partitioned  into :  

     E1 = "the integers 1 to 8"    and  

     E2 = "the integers 9 to 15".  
 

  ‡ If  E  is the event "even number"  then  the  probabilities  for  the 

situation  described  by  Baye's Theorem  can  be  calculated  in  two 

ways,  both giving same results.   
     
                             P(E1 ∩ E)   

P(E1|E) =                                              
                     P(E1 ∩ E) + P(E2 ∩ E) 

            4 / 15   
=                                             = 4 / 7               
     (4 / 15) + (3 / 15) 
  

     
                           P(E1).P(E|E1) 

P(E1|E) =                                              
                  P(E1).P(E|E1) + P(E2).P(E|E2) 
  

         8 / 15  x  4 / 8 
=                                             =  4 / 7 
     (8/15 x 4/8) + (7/15 x 3/15)  

    
  Thus Bayes' Theorem  can  be extended  for  Mutually Exclusive Events as : 
                                                             P(Ei ∩ E)   

P(Ei | E)    =                                              
                            P(E1 ∩ E) + P(E2 ∩ E)  +  . . . . . +   P(Ek ∩ E) 
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AI - Statistical Reasoning 
  Example 3 :   Clinic  Trial 
  In a clinic, the probability of the patients having HIV virus is 0.15.  

A blood test done on patients :  

If patient has virus,  then  the test is +ve with probability 0.95.  

If the patient does not have the virus, then the test is +ve with probability 0.02.  

  Assign  labels to events :   H = patient has virus;     P = test +ve 

  Given :  P(H) = 0.15 ;      P(P|H) = 0.95 ;       P(P|¬H) = 0.02   

  Find   : 

If the test is +ve  what are the probabilities that the patient 

i)  has the virus  ie  P(H|P) ;     ii) does not have virus  ie  P(¬H|P) ; 

If the test is -ve   what are the probabilities that the patient 

iii) has the virus  ie  P(H|¬P) ;  iv) does not have virus  ie  P(¬H|¬P) ; 

  Calculations : 

  i)   For P(H|P)  we can write down Bayes Theorem as  

   P(H|P) =   [ P(P|H) P(H) ] / P(P) 

We know P(P|H) and P(H) but not P(P) which is  probability of a +ve result.  

There are two cases,  that a patient could have a +ve result, stated below : 

   1. Patient has virus and gets a +ve result :  H ∩ P  

   2. Patient does not have virus and gets a +ve result: ¬H ∩ P  

   Find probabilities for the above two cases and then add  

ie   P(P) = P(H ∩ P) + P(¬H ∩ P).  

But from the second axiom of probability we have :  

  P(H ∩ P) = P(P|H) P(H)  and    P(¬H ∩ P) = P(P|¬H) P(¬H). 

Therefore putting these we get : 

  P(P) = P(P|H) P(H) + P(P|¬H) P(¬H) = 0.95 × 0.15 + 0.02 × 0.85  = 0.1595

   Now  substitute  this  into  Bayes Theorem  and  obtain  P(H|P) 
 

                                                                                   

           
  ii)   Next is to work out  P(¬H|P)  

     P(¬H|P)  = 1 - P(H|P)  =   1 – 0.8934 = 0.1066 

  iii) Next is to work out  P(H|¬P) ;  again we write down Bayes Theorem  
    

 

                                                            here we need  P(¬P)   which is   1 – P(P) 
 
                =   (0.05 × 0.15)/(1-0.1595) = 0.008923 
 

  iv) Finally,  work out   P(¬H|¬P) 

   It  is  just    1 - P(H|¬P)  =   1- 0.008923   =   0.99107 
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AI - Statistical Reasoning 
 3.2 Certainty Factors in Rule-Based Systems 

 
  The certainty-factor model was one of the most popular model for 

the representation and manipulation of uncertain knowledge in the 

early (1980s) Rule-based expert systems.  
 

The model was criticized by researchers in artificial intelligence 

and  statistics  being ad-hoc-in nature. Researchers and developers 

have stopped  using  the  model. 
 

Its place has been taken by more expressive formalisms of 

Bayesian belief networks for the representation and manipulation 

of uncertain knowledge. 

  
The manipulation of uncertain knowledge in the Rule-based expert 

systems is illustrated in the next three slide before moving to 

Bayesian  Networks.  
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AI - Statistical Reasoning 
 • Rule  Based  Systems 

Rule based systems have been discussed in previous lectures.  

Here  it is  recalled  to  explain  uncertainty. 
  ■ A rule is an expression of the form   "if  A  then  B" 

where A is an assertion and B can be either an action or  

another  assertion.  
   Example :  Trouble shooting of water pumps 

   1. If pump failure then the pressure is low  

   2. If pump failure then check oil level  

   3. If power failure then pump failure  

  ■ Rule based system consists of a library of such rules.  
 

  ■ Rules reflect essential relationships within the domain. 
 

  ■ Rules reflect ways to reason about the domain. 
 

  ■ Rules draw conclusions and points to actions, when specific information 

about the domain comes in. This is called inference.  
 

  ■ The inference is a  kind of chain reaction like : 

If there is a power failure then (see rules 1, 2, 3 mentioned above)   
    Rule 3   states that there is a pump failure,  and 

    Rule 1   tells that the pressure is low,  and  

    Rule 2   gives a (useless) recommendation to check the oil level. 

  ■ It is very difficult to control such a mixture of  inference back  and  forth 

in  the  same  session  and  resolve  such  uncertainties.   
 

How to deal such uncertainties ? 

 [continued in the next slide] 

53    



R
C
 C

hak
ra

bort
y,

 w
w

w
.m

yr
ea

der
s.

in
fo





AI - Statistical Reasoning 
  [continued from  the previous  slide] 

 

How  to  deal   uncertainties in rule based system? 

 

A  problem  with  rule-based  systems  is  that often the connections 

reflected  by  the  rules  are  not  absolutely  certain (i.e. deterministic), 

and  the  gathered  information  is  often  subject  to  uncertainty. 
 

In such cases, a  certainty measure  is  added  to  the  premises  as  well 

as  the conclusions in  the  rules  of  the  system.  
 

A rule then provides a function  that  describes :  how  much a change

in the certainty of  the  premise  will  change  the  certainty of the 

conclusion.  
 

In its simplest form, this looks like :   

         If A (with certainty x)   then B (with certainty f(x)) 
 

This  is  a  new rule,  say rule 4,   added  to  earlier  three  rules. 
 

[continued in the next slide] 
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AI - Statistical Reasoning 
   [continued from  the previous  slide] 

 
  ■ There are many schemes for treating uncertainty in rule based systems. 

The most common are :  

   ‡ Adding  certainty  factors. 

   ‡ Adoptions  of  Dempster-Shafer belief  functions. 

   ‡ Inclusion  of  fuzzy  logic. 

   In these schemes, uncertainty is treated locally, means  action is 

connected directly to incoming rules  and uncertainty of their elements.  

Example : In addition to rule 4 ,  in previous slide,  we have the rule  

         If C (with certainty x) then B (with certainty g(x)) 
 

Now  If  the information  is  that  A  holds with certainty a  and  C  holds 

with  certainty c,   Then  what  is  the  certainty  of B ? 
 

   Note : Depending  on  the  scheme, there are different algebras for such 

a combination of uncertainty. But all these algebras in many cases 

come  to incorrect conclusions because combination of uncertainty is not 

a local phenomenon, but it is strongly dependent on the entire situation 

(in principle a global matter). 
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AI - Statistical Reasoning 
 3.3 Bayesian  Networks  and  Certainty Factors  

 
A Bayesian network (or a belief network) is a probabilistic  graphical  model 

that represents a set of variables and their probabilistic independencies. 

For example, a Bayesian network could represent the probabilistic 

relationships between diseases and symptoms. Given symptoms, the 

network can be used to compute the probabilities of the presence of various 

diseases. 

 
Bayesian Networks are also called :  Bayes nets,  Bayesian Belief Networks 

(BBNs) or simply Belief Networks. Causal Probabilistic Networks (CPNs). 
 

A Bayesian network consists of :  

 a set of nodes and a set of directed edges between nodes.  

 the edges reflect cause-effect relations within the domain.  

 The effects are not completely deterministic (e.g. disease -> symptom). 

 the strength of an effect is modeled as a probability. 

56   



R
C
 C

hak
ra

bort
y,

 w
w

w
.m

yr
ea

der
s.

in
fo





AI - Statistical Reasoning 
 • Bayesian Networks 

We have applied Bayesian probability theory, in  earlier  three examples

(example 1, 2, and 3) ,  to relate two or more events.  But  this can be 

used to relate many events by tying them together in a network.  
  

  Consider the previous example 3 - Clinic  trial 

The trial says,  the probability of the patients having HIV virus is 0.15.  

A  blood  test  done  on  patients :  

If patient has virus,  the test is +ve with probability 0.95.  

If the patient does not have the virus,  the test is +ve with probability 0.02. 

This means   given :   P(H) = 0.15 ;      P(P|H) = 0.95 ;       P(P|¬H) = 0.02   

   
  Imagine,  the patient  is  given  a  second  test  independently of the first; 

means  the  second test  is  done at a later date  by a  different person 

using  different  equipment. So, the error on the  first  test  does  not affect 

the  probability  of  an  error  on  the  second  test.  

In other words the two tests are independent. This is depicted using the 

diagram below :  

A  simple  example  of  a  Bayesian Network. 
 

   
 
 
  
 
 
 
 

Event  H  is the cause of the two events P1 and P2. 

The arrows represent the fact that  H  is driving

P1 and P2.  

 

The network contained 3 nodes. 

  If  both  P1  and  P2  are  +ve   

then  find  the  probability  that  patient  has  the  virus ?  

In  other  words  asked  to  find  P(H|P1 ∩ P2) .   

How to find ? 

[continued in the next slide]   
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AI - Statistical Reasoning 
  ■ Bayes Theorem  (Ref. previous previous slide  example 3 ) 

                                              P(P1∩ P2|H) . P(H) 
         P(H|P1 ∩ P2)    =                                              
                                                P(P1∩ P2)  

Here  there  are  two  quantities  which  we  do  not  know.  

The  first  is  P(P1 ∩ P2|H)  and  the  second  is  P(P1 ∩ P2)  

   ‡ Find         P(P1 ∩ P2|H)   

    Since the two tests are independent,  so   

                 P(P1 ∩ P2|H)  =   (P1|H)P(P2|H)  

   ‡ Find         P(P1 ∩ P2) 

    As  worked  before  for P(P)  which  is  the  probability of  a +ve 

result,  here  again  break  this  into  two  separate  cases:  
    ◊ patient  has  virus  and  both  tests  are +ve 
    ◊ patient  not  having  virus  and  both  tests  are +ve 
   ‡ As  before  use  the  second  axiom  of  probability 

     P(P1 ∩ P2) = P(P1 ∩ P2 |H) P(H) + P(P1 ∩ P2 |¬H) P(¬H) 

   ‡ Because the two tests are independent given H we can write : 

     P(P1 ∩ P2) = P(P1|H) P(P2|H) P(H) + P(P1|¬H) P(P2|¬H) P(¬H) 

                        = 0.95 × 0.95 × 0.15 + 0.02× 0.02 × 0.85 

                        = 0.135715  
   ‡ Substitute this into Bayes Theorem above and obtain 

 
                                  P(P1∩ P2|H) . P(H) 
     P(H|P1 ∩ P2)  =                                              
                                         P(P1∩ P2)  

                             =  (0.95 x 0.95 x 0.15) / 0.135715 = 0.99749 
 

   ‡ Note :  The results while two independent HIV tests performed 

 Previously we calculated the probability, that the patient had HIV 

given one +ve  test, as  0.8934.  

 Later second HIV test was performed.  After two +ve tests,  we 

see  that  the  probability has  gone up to 0.99749.  

 So after two +ve tests it is more certain that the patient does 

have the HIV virus.  
 

The next slide :  a case where one tests is +ve  and  other  is -ve. 
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AI - Statistical Reasoning 
   Case where one tests is +ve and other is -ve. 

 

This means,  an error on one of the tests but we don’t know which one; 

it may be any one.   

The issue is  -  whether  the  patient  has HIV virus or not ? 
 

   ‡ We need to calculate   P(H| P1 ∩ ¬P2).  

    Following  same  steps  for  the  case  of  two +ve tests,   

write Bayes Theorem 

                                     P(P1 ∩ ¬P2 |H) P(H) 
    P(H| P1 ∩ ¬P2)  = 
                                           P(P1 ∩ ¬P2)   
 

   ‡ Now work out  P(P1 ∩ ¬P2 |H)  and  P(P1 ∩ ¬P2)  using the fact that 

P1 and  P2  are independent  given  H , 

 P(P1 ∩ ¬P2 |H)  =   P(P1|H) P(¬P2|H)    and  

 P(P1 ∩ ¬P2)  = P(P1 ∩ ¬P2 |H) P(H) + P(P1 ∩ ¬P2 |¬H) P(¬H)  

                        = P(P1|H) P(¬P2 |H) P(H) + P(P1|¬H) P(¬P2|¬H) P(¬H) 

                        = 0.95 × 0.05 × 0.15 + 0.02 × 0.98 × 0.85 

                        = 0.023785 

   ‡ Substitute  these  values  into  Bayes Theorem,  we obtain 
 
                                      0.95 x 0.05 x 0.15 
    P(H| P1 ∩ ¬P2) =                                        =  0.299 
                                              0.023785 
 

   ‡ Note :  

 Belief in H,  the event  that the patient has virus,  has increased. 

 Prior belief was 0.15 but it has now gone up to 0.299.  

 This appears strange because we have been given two 

contradictory pieces of data. But looking closely we see that 

probability of an error in each case is  not  equal. 
   ‡ The probability of a +ve test when patient is actually -ve is 0.02.  

The probability of a -ve test when patient is actually +ve is 0.05. 

Therefore we are more inclined to believe an error on the second 

test  and  this  slightly increases our belief  that the patient  is +ve. 
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AI - Statistical Reasoning 
 • More Complicated Bayesian Networks 

 

The previous network was simple contained three nodes.  Let  us look  at  a 

slightly  more  complicated  one  in  the  context  of  heart  disease. 
 

  Given the following facts about heart disease.  
 

  ■ Either smoking or bad diet or both can make heart disease more likely. 

  ■ Heart disease can produce either or both of the following two 

symptoms: 
   ‡ high blood pressure 
   ‡ an abnormal electrocardiogram 

  ■ Here smoking and bad diet are regarded as causes of heart disease.  

The heart disease in turn is a cause of high blood pressure and an 

abnormal electrocardiogram.  

[continued in the next slide] 
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AI - Statistical Reasoning 
   [continued from  the previous  slide] 

 
  ■ An  appropriate  network  for  heart  disease  is  represented  as 

 
    

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The symbols define : 

S = smoking,   

D = bad diet,  

H = heart disease,  

B = high blood pressure,  

E = abnormal electrocardiogram 

 
   Here  H  has  two  causes  S  and  D.   

   Find  probability of  H,   given  each  of  the  four  possible  

combinations  of   S  and  D. 

   A medical survey gives us the following data : 
 

    P(S)                   = 0.3     P(D)        = 0.4 

    P(H| S ∩ D)          =  0.8  

    P(H| ¬S ∩ D)       =  0.5  

    P(H| S ∩ ¬D)       =  0.4  

    P(H| ¬S ∩ ¬D)    =  0.1  

    P(B|H)                  =  0.7 P(B|¬H)   =  0.1 

    P(E|H)                   =  0.8         P(E|¬H)   =  0.1 

      
   Given  these  information,  an  answer to  the  question concerning this 

network : 

what  is the  probability of heart disease ? 

 
   [Note :  The  interested  students  may  try  to  the  find answer.]  
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AI - Statistical Reasoning 
 3.4 Dempster – Shafer Theory (DST) 

 
DST is a mathematical theory of evidence based on belief functions and 

plausible reasoning. It is used to combine separate pieces of information 

(evidence) to calculate the probability of an event.  
  

DST offers an alternative to traditional probabilistic theory for the

mathematical  representation  of  uncertainty. 
 

DST can be regarded as, a more general approach  to  represent 

uncertainty  than  the  Bayesian  approach.   

Bayesian  methods  are  sometimes  inappropriate       
 

  Example :   
   Let  A  represent  the  proposition  "Moore is attractive".  

Then the axioms of probability insist that  P(A) + P(¬A) = 1. 

Now suppose that Andrew does not even know who "Moore"  is,  then 

   ‡ We cannot say that Andrew believes the proposition if he has no 

idea what it means. 
 

   ‡ Also, it is not fair to say that he disbelieves the proposition. 

   ‡ It would therefore be meaningful to denote Andrew's belief B of 

B(A)  and  B(¬A)  as  both  being 0.  

 
   ‡ Certainty factors do not allow this.  
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AI - Statistical Reasoning 
 • Dempster-Shafer Model    

The  idea  is   to  allocate  a  number   between 0 and 1  to indicate a 

degree of belief  on  a proposal  as  in the probability framework.   

However,  it  is not considered a probability but a belief mass.  

The  distribution  of  masses  is  called  basic  belief assignment. 
 

In other words, in this formalism a degree of belief (referred as mass) is 

represented as a belief function rather than a Bayesian probability 

distribution. 
 

   Example:  Belief  assignment  (continued from previous slide) 
 
Suppose a system has five members, say five independent states, and 

exactly one of  which  is  actual.  If the original set is called S,  | S | = 5,

then the set of all subsets (the power set)  is  called  2S.  

 If each possible subset as a binary vector (describing any member is 

present or not by writing 1 or 0 ),  then  25  subsets  are possible,

ranging from the empty subset  ( 0, 0, 0, 0, 0 )  to the "everything" 

subset  ( 1, 1, 1, 1, 1 ).  

 The "empty"  subset  represents a "contradiction", which  is  not  true in 

any  state,  and  is  thus  assigned  a  mass  of  one ;  

 The  remaining  masses  are  normalized  so  that  their  total  is  1.  

 The "everything" subset is  labeled  as "unknown"; it represents the 

state where all elements are present one ,  in  the  sense that you 

cannot  tell  which  is  actual. 

Note : Given a set S, the power set  of S, written 2S, is the set of all subsets of S, 

including the empty set and S. 
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AI - Statistical Reasoning 
 • Belief  and  Plausibility 

 
Shafer's framework allows for belief about propositions to be represented 

as intervals,  bounded  by  two values,  belief (or support) and plausibility: 

                    belief  ≤   plausibility 

Belief  in a hypothesis  is  constituted  by  the  sum  of  the masses  of  all 

sets enclosed by it (i.e. the sum of the masses of all subsets of the 

hypothesis). It is the amount of belief that directly supports a given 

hypothesis  at  least  in  part,  forming  a  lower  bound.  
 

Plausibility  is 1 minus the sum of the masses of all sets whose intersection 

with the hypothesis is empty. It is an upper bound on  the possibility  that 

the hypothesis could possibly happen, up to that value, because there is 

only  so much  evidence  that  contradicts  that  hypothesis.  
 

Example :   

A  proposition  say    "the  cat  in  the  box  is  dead." 

Suppose  we have belief of 0.5  and plausibility of 0.8  for the proposition. 
 
[continued in the next slide] 
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AI - Statistical Reasoning 
  [continued in the previous slide] 

Example :   

A  proposition  say    "the  cat  in  the  box  is  dead." 

Suppose we have belief of 0.5  and plausibility of 0.8  for the proposition. 
 

 Evidence to state strongly, that proposition is true with confidence 0.5.  

 Evidence contrary to hypothesis ("the cat is alive") has confidence 0.2.  

 Remaining mass of 0.3 (the gap between the 0.5 supporting evidence 

and  the 0.2 contrary evidence) is "indeterminate,"  meaning  that  the

cat  could  either  be  dead  or alive. This interval represents the level of 

uncertainty based on the evidence in the system.  

Hypothesis Mass belief plausibility 

Null (neither alive nor dead) 0 0 0 

Alive 0.2 0.2 0.5 

Dead 0.5 0.5 0.8 

Either (alive or dead) 0.3 1.0 1.0 
        

   Null hypothesis is set to zero by definition, corresponds to "no solution". 

 Orthogonal hypotheses "Alive" and "Dead" have probabilities of 0.2 and 

0.5, respectively. This could correspond to "Live/Dead Cat Detector" 

signals, which have respective reliabilities of 0.2 and 0.5. 

 All-encompassing "Either" hypothesis (simply acknowledges there is a 

cat in the box) picks up the slack so that the sum of the masses is 1.  

 Belief for the "Alive" and "Dead" hypotheses matches their corresponding 

masses because they have no subsets;  

 Belief for "Either" consists of the sum of all three masses (Either, Alive, 

and Dead) because "Alive" and "Dead" are each subsets of "Either".  

 "Alive" plausibility is 1- m (Death) and "Dead" plausibility is 1- m (Alive). 

 "Either" plausibility sums  m(Alive) + m(Dead) + m(Either).  

 Universal hypothesis ("Either") will always have 100% belief and 

plausibility; it acts as a checksum of sorts. 
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AI - Statistical Reasoning 
 • Dempster-Shafer Calculus 

 

In the previous slides, two specific examples of Belief and plausibility have 

been stated.  It would now be easy to understand their generalization.  
  
The Dempster-Shafer (DS) Theory, requires  a  Universe of Discourse U

(or Frame of Judgment) consisting of mutually exclusive alternatives,

corresponding to an attribute value domain. For instance, in satellite image 

classification  the  set U  may  consist  of  all  possible  classes  of  interest.

 
Each subset  S  ⊆   U  is assigned  a  basic probability  m(S),  a belief Bel(S), 

and  a plausibility Pls(S)  so that  

     m(S),  Bel(S),  Pls(S)  ∈  [0, 1]    and      Pls(S)  ≥  Bel(S)    where  
 

 m  represents the strength of an evidence,  is the basic probability;  

e.g., a group of pixels belong to certain class, may be assigned value m. 

 Bel(S) summarizes  all  the reasons  to  believe  S.  

 Pls(S) expresses how much one should believe in S  if all currently 

unknown facts were to support S.  
 

The  true belief  in  S  is  somewhere  in the belief interval  [Bel(S), Pls(S)]. 
 

The  basic  probability  assignment m  is  defined  as function

m : 2U → [0,1] ,   where  m(Ø) = 0  and  sum of m  over  all  subsets  of 

U  is 1   (i.e.,  ∑ S ⊆  U m(s) = 1 ).  

  

For a  given  basic  probability  assignment  m,  the  belief  Bel of  a 

subset A  of  U  is  the sum of m(B)  for  all subsets B of A , and 

the plausibility Pls  of  a subset A  of  U  is  Pls(A)  = 1 - Bel(A') (5)

where   A'  is  complement  of  A  in  U. 
 
[continued in the next slide] 
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AI - Statistical Reasoning 
  [continued in the next slide] 

Summarize :  

The confidence interval  is  that  interval  of  probabilities  within  which 

the  true probability lies  with  a  certain  confidence  based  on  the 

belief "B"  and  plausibility "PL"  provided  by  some  evidence "E"  for  a 

proposition "P".   

The  belief  brings  together  all  the  evidence  that  would  lead  us to 

believe  in  the  proposition  P  with  some  certainty.  

The  plausibility  brings  together  the  evidence  that  is  compatible  with 

the  proposition P  and  is  not  inconsistent  with  it. 

If  "Ω"  is  the  set  of  possible outcomes,  then  a  mass probability "M"

is  defined  for  each  member  of  the  set  2Ω   and   takes   values  in 

the  range  [0,1]  .    The  Null  set,  "ф",  is  also  a  member  of  2Ω  .  

  Example      

If         Ω     is  the   set { Flu (F),  Cold (C),  Pneumonia (P) }   

Then   2Ω    is  the   set {ф, {F}, {C}, {P}, {F, C}, {F, P}, {C, P}, {F, C, P}}  

  Confidence   interval  is   then   defined  as   [ B(E),  PL(E) ]       where   

B(E)  =  ∑A M   ,  where  A ⊆  E   i.e.,  all  evidence  that  makes  us  believe 

                         in  the  correctness  of  P,   and 

PL(E) = 1 – B(¬E)  =  ∑¬A  M   ,    where  ¬A  ⊆   ¬E   i.e.,  all the evidence 

                                                 that  contradicts  P. 
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AI - Statistical Reasoning 
 • Combining Beliefs 

The Dempster-Shafer calculus  combines  the  available  evidences 

resulting in a belief and a plausibility in the combined evidence that 

represents  a  consensus  on  the  correspondence.  The  model  maximizes 

the  belief  in  the  combined  evidences. 
 

The rule of combination states  that  two  basic  probability  assignments

M1  and  M2  are  combined  into  a  third  basic  probability  assignment 

by  the  normalized  orthogonal  sum  m1 ⊕ m2   stated  below. 
 

  Suppose  M1  and  M2  are  two  belief  functions. 
  Let  X  be  the  set  of  subsets  of  Ω   to  which  M1  assigns  a  nonzero 

value  and    let   Y   be  a  similar  set  for   M2  , 

  then  a  new  belief  function  M3  from  the  combination  of  beliefs  in M1  

and  M2  is  obtained  as  

 
                             ∑ x ∩ Y = Z   M1(X) M2(Y) 

      M3 (Z)  =                                                          
                                            1 – K 

       where   ∑ x ∩ Y = ф   M1(X)  M2(Y)  ,   for   Z = ф 
 

       M3 (ф) is defined to be  0   so that the orthogonal sum remains  

     a basic probability assignment.  
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AI - Statistical Reasoning 
 3.5 Fuzzy Logic 

  We have discussed only binary valued logic and classical set theory  like :  

A person belongs to a set of all human beings, and if given a 

specific subset, say all males, then one can say whether or not 

the particular person belongs to this set.  

 
This  is  ok  since  it  is  the  way  human  reason. e.g.,  

       IF  person  is  male  AND  a  parent  THEN  person  is  a  father. 

The rules are formed using operators.  

Here, it is intersection operator "AND"  which  manipulates  the  sets.  

However,  not  everything  can  be  described  using  binary  valued  sets.  

 The  grouping of persons into "male" or "female" is easy,  

but  as  "tall"  or  "not tall"   is  problematic.  

 A set of "tall" people is difficult to define, because there is no distinct 

cut-off  point  at  which  tall  begins.  
 

Fuzzy logic  was  suggested  by  Zadeh  as  a  method  for  mimicking the 

ability of human reasoning using a small number of rules and still producing 

a  smooth  output  via a process of interpolation.  
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AI - Statistical Reasoning 
 • Description of Fuzzy Logic 

 
With fuzzy logic an element could partially belong to a set represented by 

the set membership.  Example,  a person of height 1.79 m  would  belong 

to both  tall  and  not tall  sets with  a  particular  degree of membership. 
 

  Difference between binary logic and fuzzy logic  

   
Grade of thruth 
 
                Not tall          Tall 
   1 
 
 
 
 
  

  0 
                                1.8 M      height x 

Binary valued logic   {0, 1} 
 

 
Grade of thruth 
 
                Not tall          Tall 
   1 
 
 
 
 
  

  0 
                               1.8 M      height x 

            Fuzzy logic   [0, 1] 
 

   

A fuzzy logic system is one that has at least one system component that 

uses fuzzy logic for its internal knowledge representation. 
 

  Fuzzy system communicate information using fuzzy sets. 

  Fuzzy logic is used purely for internal knowledge representation and 

externally  it  can be  considered  as  any  other  system  component. 
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AI - Statistical Reasoning 
 • Fuzzy Membership 

 
  Example :    Five  tumblers 

   Consider two sets:  F and  E.    

 F  is  set  of  all  tumblers  belong  to  the  class  full,   and  

 E  is  set  of  all  tumblers  belong  to  the  class  empty.  

Definition  of  the  set  F  and  E 

Tumblers 

  
Grade of membership to set F 100% 75% 50% 25% 0% 

Grade of membership to set E 0% 25% 50% 75% 100%  
     

   
              

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  The  sets F and E have some elements, having partial membership.  

Such kind  of  non-crisp  sets  are  called  fuzzy sets.  

The set  "all tumblers"   here  is  the basis  of  the  fuzzy  sets  F  and E,  

is  called  the  base  set.     
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