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Associative Memory 
 

 
 What  is  Associative Memory  ? 
 
 • An  associative  memory  is  a  content-addressable structure  that  maps  a 

set  of  input patterns  to  a  set  of  output  patterns.  
 

 • A content-addressable structure is a type of memory that allows the 

recall of data based on the degree of similarity between the input pattern 

and the patterns stored in memory. 
 

 • There are two types of associative  memory :  auto-associative  and 

hetero-associative.  
 

 • An auto-associative memory retrieves a previously stored pattern 

that   most  closely  resembles  the  current  pattern.  
 

 • In a hetero-associative memory, the retrieved pattern is in general, 

different  from  the  input  pattern  not  only  in  content  but  possibly  also 

in  type  and  format. 
 

 • Neural networks are used  to  implement  these  associative  memory 

models  called  NAM  (Neural associative memory). 
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SC -  AM  description 

1. Associative Memory   

An associative memory is a content-addressable structure that maps a 

set of input patterns to a set of output patterns.  A content-addressable 

structure  refers to a memory organization  where the  memory  is  accessed 

by  its content as opposed to an explicit address   in  the  traditional  computer 

memory system. The associative memory are of two types : auto-associative 

and  hetero-associative.  
 

 An auto-associative memory  retrieves a previously stored pattern that 

most  closely  resembles  the  current  pattern.  
 

 In hetero-associative memory, the retrieved pattern is in general different 

from the input pattern not only in content but possibly also in type 

and  format. 
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SC -  AM  description 
 1.1 Description of  Associative Memory 

An associative memory is a content-addressable structure that allows, 

the recall of data, based on the degree of similarity between the 

input pattern  and  the  patterns  stored  in  memory.   
 

 • Example : Associative Memory 

The  figure  below  shows  a  memory containing names of several people.  

If the given memory is content-addressable,  

Then using the erroneous string "Crhistpher Columbos" as key is 

sufficient  to  retrieve the correct name "Christopher Colombus."   

 
In this sense, this type of memory is robust and fault-tolerant, because 

this  type of  memory  exhibits some  form  of  error-correction capability. 
 

   
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
Fig.   A content-addressable memory, Input  and Output 

       
  Note : An associative memory is accessed by its content, opposed 

to an explicit address in the traditional computer memory system.

The memory allows the recall of information based on partial knowledge 

of  its  contents. 
 

  [Continued in next slide]  
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SC -  AM  description 
   [Continued from  previous  slide] 

 
  ■ Associative memory is a system that associates two patterns (X, Y)

such that when one is encountered, the other can be recalled. 

The associative memory are of  two  types : auto-associative  memory

and   hetero-associative  memory. 
 

Auto-associative  memory   

Consider, y[1], y[2],  y[3], . . . . . y[M],  be the number of stored 

pattern vectors  and  let y(m) be the components of these vectors, 

representing features extracted from the patterns.  The auto-associative 

memory will output a pattern vector y(m)  when inputting a noisy or 

incomplete version of  y(m).  
 

Hetero-associative memory  

Here the memory function is more general. Consider, we  have  a 

number  of  key-response  pairs    {c(1), y(1)}, {c(2), y(2)}, . . . . . . , 

{c(M), y(M)}.  The hetero-associative memory will output a pattern 

vector y(m) if a noisy or incomplete verson of the c(m) is given. 
  

  ■ Neural networks are used  to  implement  associative  memory models.

The well-known  neural  associative  memory  models  are : 

 Linear associater is the simplest artificial neural associative 

memory. 

 Hopfield model  and  Bidirectional Associative Memory (BAM)

are  the other popular ANN models used as associative memories. 
 

These models follow different neural network architectures to 

memorize  information.  
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SC -   AM  description 
 1.2 Working of Associative Memory 

 • Example    
 
An associative memory is a storehouse of associated patterns which 

are  encoded  in  some  form.   

− When the storehouse is triggered or excited with a pattern, then 

the  associated  pattern  pair  is  recalled  or  appears  at  the output.  

− The input could be an exact or distorted or partial representation of 

a  stored  pattern. 

Fig  below  illustrates  the  working  of  an  associated  memory. 
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
   Fig.  Working of an associated memory 
 

The associated pattern pairs  

(∆ , Γ), (÷ , +), (7 , 4).  

 

The association is represented 

by the symbol         

 
The associated pattern pairs

are stored the memory.  

.     

  When the memory is triggered with an input pattern say ∆ then 

the  associated  pattern  Γ  is  retrieved  automatically. 
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SC -   AM  description 
 1.3 Associative Memory - Classes  

As  stated before,  there  are  two  classes  of  associative  memory:   

 auto-associative and  

 hetero-associative memory.   
 

An  auto-associative memory, also known as  auto-associative correlator, 

is used to retrieve a previously stored pattern  that  most  closely

resembles  the  current  pattern;  
 

A hetero-associative memory, also  known as  hetero-associative correlator, 

is  used to retrieve pattern  in  general,  different  from  the  input pattern 

not  only  in  content  but  possibly  also  different  in  type  and  format.  
 

Examples  
   

 
 
 
 
 
 
 
 
 
 
 
 

 
Hetero-associative memory 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Auto-associative memory 

   
Fig.  Hetero  and Auto  Associative memory Correlators  
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SC -  AM  description 
 1.4 Related  Terms   

Here explained : Encoding or memorization, Retrieval or recollection, 

Errors  and  Noise,  Memory  capacity   and   Content-addressability.   
 

 • Encoding  or  memorization 

Building an associative memory means, constructing a connection 

weight matrix W  such that when an input pattern is presented, and 

the  stored  pattern  associated  with  the  input  pattern  is  retrieved.  
  
This process of constructing the connection weight matrix is called 

encoding.  During encoding, for an associated pattern pair (Xk, Yk) ,

the weight  values  of  the correlation matrix  Wk  are  computed  as  

         (wij)k  =  (xi)k  (yj)k   ,  where 

       (xi)k   represents  the  i th  component  of  pattern  Xk  ,  and 

       (yj)k   represents  the  j th  component  of  pattern  Yk   

       for    i = 1, 2, . . . , m    and    j = 1, 2, . . . , n.    
 

  Constructing of the connection weight matrix  W  is accomplished by 

summing  up  the individual correlation matrices  Wk ,  i.e.,  

 
         W =  α         Wk   where 
 

   α  is   the   proportionality  or  normalizing  constant.  
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SC -  AM  description 
 • Retrieval or recollection 

After memorization, the process of retrieving a stored pattern, given 

an  input  pattern,  is  called  decoding.   
 

Given an input pattern X, the decoding or recollection is  accomplished by: 
     

first  compute   the  net  input  to  the  output  units   using  
 

        input j  =         xi  w i j     

 
  where  input j  is weighted sum of  the  input  or  activation   value  of 

  node   j ,  for  j = 1, 2, ..., n.   

 
then  determine  the  units  output  using  a  bipolar  output  function: 
         
                          +1  if  input j  ≥ θ j   
         Y j  =                                 
                          - 1   other wise 

          where   θ j   is  the  threshold  value  of  output  neuron  j .   
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SC -  AM  description 
 • Errors  and  noise 

The  input  pattern  may  contain  errors and noise, or may be an 

incomplete  version  of  some  previously  encoded  pattern.   
 

When a corrupted input pattern is presented, the network will 

retrieve  the  stored  pattern  that  is  closest  to  actual  input  pattern.  
 

The presence of noise or errors results only in a mere decrease 

rather   than  total  degradation  in  the  performance  of  the  network.  
  
Thus, associative memories  are  robust  and  fault  tolerant  because 

of many processing elements performing highly parallel and 

distributed  computations.  
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SC -  AM description 
 • Performance Measures 

The memory capacity and content-addressability are the measures 

of associative memory performance for correct retrieval. These two 

performance  measures  are  related  to  each  other.  
 

Memory capacity refers to the maximum number of associated 

pattern  pairs  that  can  be  stored  and  correctly  retrieved.  
 

Content-addressability  is  the ability of the network  to  retrieve  the 

correct  stored  pattern.  
 

If  input  patterns  are  mutually orthogonal - perfect retrieval is possible.  
 

If  the  stored  input  patterns  are  not mutually orthogonal - non-perfect 

retrieval  can  happen  due  to  crosstalk  among  the  patterns.   
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SC -   AM models 

2. Associative Memory Models 
 
An associative memory is a system which stores mappings of specific input 

representations   to  specific  output  representations.  
 

− An associative memory "associates" two patterns such that when one is 

encountered, the other can be reliably recalled. 
 

− Most associative memory implementations are realized as connectionist 

networks. 
 

The  simplest  associative  memory  model is  Linear associator,  which  is  a 

feed-forward type of network. It has very low memory capacity and 

therefore  not  much  used.  
  
The  popular  models  are   Hopfield Model   and  Bi-directional  Associative 

Memory  (BAM)  model.   
 

The  Network  Architecture  of  these  models  are  presented  in  this  section. 
 

13  
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SC -  AM models 
 2.1 Associative Memory Models  

The simplest and among the first studied associative memory models 

is Linear associator. It is a feed-forward type of network where  the 

output  is  produced  in  a single  feed-forward  computation.  It   can be 

used as an auto-associator as well as a hetero-associator,  but  it 

possesses  a  very  low memory  capacity and  therefore  not  much  used. 
 

The  popular associative memory models  are  Hopfield Model  and 

Bi-directional  Associative  Memory (BAM)  model.  

 

− The Hopfield model is an auto-associative memory, proposed by 

John Hopfield in 1982. It is an ensemble of simple processing units 

that have a fairly complex collective computational abilities and 

behavior.  The Hopfield model computes its output recursively in 

time until the system becomes stable. Hopfield networks are

designed  using  bipolar  units  and  a  learning  procedure.  
 

− The Bi-directional associative memory (BAM) model  is  similar to 

linear associator,  but  the  connections  are  bi-directional  and 

therefore  allows forward and backward flow of information between 

the layers.  The BAM model can perform both auto-associative 

and hetero-associative recall of stored information. 
 

The network architecture  of  these  three models  are  described  in 

the  next  few  slides.  
14      
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SC -  AM models 
 2.2 Network Architectures of AM Models  

 
The neural associative memory models  follow  different  neural  network 

architectures  to  memorize  information. The network architectures

are  either  single layer  or  two  layers . 

 

 The Linear associator model, is a feed forward type network,

consists, two layers of processing units, one serving as the input layer 

while  the  other  as  the  output  layer. 

 
 The Hopfield model, is a single layer of processing elements where 

each unit is connected to every other unit in the network other 

than  itself. 

 
 The Bi-directional associative memory (BAM) model  is similar to 

that  of  linear associator  but  the  connections  are  bidirectional.   
 

In this section, the neural network architectures of these models and 

the construction of the corresponding connection weight matrix W of 

the  associative  memory  are  illustrated. 
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SC -  AM models 
 • Linear Associator Model (two layers) 

It is a feed-forward type network where the output is produced in a 

single feed-forward computation. The model consists of two layers

of processing units, one serving as the input layer while the other as 

the output layer. The inputs  are directly connected to the outputs, 

via a series of weights.  The links carrying weights connect every input 

to every output.  The sum of the products of the weights and the 

inputs is calculated in each neuron node. The network architecture 

of the linear associator is as shown below. 

 

 

 

 

 

 

 

       

                                   

 

Fig. Linear associator model 

− all n input units are connected to all m output units via connection 

weight matrix  W = [wij]n x m  where wij denotes the strength 

of  the unidirectional connection from the i th  input unit to the j th

output  unit.  
 

− the connection weight matrix stores the p different associated 

pattern   pairs  {(Xk, Yk) | k = 1, 2, ..., p} .   

 

− building an associative memory is constructing the connection 

weight matrix W  such that when an input pattern is presented, 

then  the  stored  pattern associated  with the input pattern is retrieved.  

 [Continued in next slide] 
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SC -  AM models 
  [Continued from  previous  slide]  

− Encoding : The process of constructing the connection weight matrix 

is called encoding.  During encoding the weight values of correlation 

matrix Wk  for  an associated pattern pair (Xk, Yk)  are computed as:   

       (wij)k  =  (xi)k  (yj)k    where    

       (xi)k  is  the  i th  component of pattern Xk  for i = 1, 2, ..., m,  and   

       (yj)k  is  the  j th  component of pattern Yk  for j = 1, 2, ..., n.  
   

− Weight matrix :  Construction of weight matrix W  is accomplished 

by summing those individual correlation matrices Wk, ie, W = α     Wk

where  α  is the constant of proportionality, for  normalizing, usually 

set  to  1/p  to  store  p  different  associated  pattern  pairs. 
 

− Decoding : After memorization, the network can be used for retrieval; 

the process of retrieving a stored pattern, is called decoding;

given an input pattern X,   the decoding  or  retrieving  is  accomplished 

by  computing,  first  the net  Input  as  input j =      xi  w i j  where

input j  stands for the weighted sum of the input  or activation value of 

node   j ,  for  j = 1, 2, .  . , n.  and xi is the  i th  component of pattern Xk , 

and  then determine  the  units  Output  using a  bipolar output function: 

                          +1  if  input j  ≥ θ j   
          Y j  =                                 
                          - 1   other wise 

          where θ j  is the threshold value of output neuron j .   

Note: The output units behave like linear threshold units;  that  compute 

a weighted sum of the input and produces a -1 or +1 depending 

whether the weighted sum is below or above a certain threshold value. 
 

− Performance :  The input pattern may contain errors and noise, or an 

incomplete version of some previously encoded pattern. When such 

corrupt input pattern is presented, the network will retrieve the stored 

pattern that is closest to actual input pattern. Therefore, the linear 

associator  is  robust and fault tolerant. The presence of noise or error 

results in a mere decrease rather than total degradation in the 

performance of the network.  
17      
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SC -  AM models 
 • Auto-associative Memory Model - Hopfield model  (single layer) 

Auto-associative memory means patterns rather than associated 

pattern pairs, are stored in memory. Hopfield model is one-layer 

unidirectional  auto-associative  memory.   

                         Hopfield network                                                    alternate view

 

 

 

 

 

 

 

 

 

 
 

Fig.  Hopfield model  with four units  
 

− the model consists, a single layer of processing elements where each 

unit is connected  to every other unit  in  the network  but not to itself. 

− connection weight between or from neuron j to i is given by a

number wij. The collection of all such numbers are represented 

by the weight matrix W  which  is square and symmetric, ie, w i j = w j i

for  i,  j =  1, 2, . .  . . . , m.  

− each unit has an external input I which leads to a modification 

in  the  computation  of  the  net  input  to  the  units  as  
 

     input j =     xi w i j + I j  for   j = 1, 2, . . .,  m.   

    and  xi  is  the  i th  component  of  pattern Xk 

 

− each unit acts as both input and output unit. Like linear associator, 

a single associated pattern pair is stored by computing the weight 

matrix  as  Wk  =          Yk     where   XK  =  YK 

[Continued in next slide] 
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SC -  AM models 
   [Continued from  previous  slide]  

− Weight Matrix :  Construction of weight matrix W  is accomplished by 

summing those individual correlation matrices, ie, W = α      Wk    where 

α  is the constant of proportionality, for  normalizing, usually set  to 1/p

to store  p different associated pattern pairs. Since  the Hopfield 

model is an auto-associative memory model, it is the patterns

rather than associated  pattern  pairs,  are  stored  in  memory.   

− Decoding : After memorization, the network can be used for retrieval; 

the process of retrieving a stored pattern, is called decoding; given an 

input pattern X, the decoding  or  retrieving  is  accomplished  by 

computing,  first  the net  Input  as   input j =      xi  w i j  where  input j

stands for the weighted sum of the input  or activation value of node   j , 

for  j = 1, 2, ..., n.  and  xi is the  i th  component of pattern Xk , and 

then  determine  the  units  Output  using  a  bipolar output function: 

                          +1  if  input j  ≥ θ j   
          Y j  =                                 
                          - 1   other wise 

          where θ j  is the threshold value of output neuron j .   

Note: The output units behave like linear threshold units;  that  compute a 

weighted sum of the input and produces a -1 or +1 depending whether the 

weighted sum is below or above a certain threshold value. 

 

Decoding in the Hopfield model is achieved by a collective and recursive 

relaxation search for a stored pattern given an initial stimulus pattern. 

Given an input pattern X, decoding is accomplished by computing the 

net input to the units and determining the output of those units using 

the output function to produce the pattern X'.  The pattern X' is then fed 

back to the units as an input pattern to produce the pattern X''. The 

pattern X'' is again fed back to the units to produce the pattern X'''. 

The process is repeated until the network stabilizes on a stored pattern 

where further computations do not change the output of the units. 

In the next section, the working of an auto-correlator :  how to store 

patterns, recall a pattern from the stored patterns  and  how to 

recognize  a  noisy  pattern  are  explained.  
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SC -   AM models 
 • Bidirectional Associative Memory  (two-layer) 

 
Kosko (1988) extended  the  Hopfield  model, which is single layer, 

by incorporating an additional layer to perform recurrent 

auto-associations as well as hetero-associations on the stored 

memories. The network structure of the bidirectional associative 

memory model is similar to that of the linear associator but the 

connections  are  bidirectional;  i.e.,    

wij  =  wji  ,    for   i = 1, 2, . . . ,  n    and    j = 1, 2, . . . ,  m. 

 

 

 

 

 

 

 

 

 
                        

Fig. Bidirectional Associative Memory model 

 

− In the bidirectional associative memory, a single associated pattern 

pair  is  stored  by  computing  the  weight  matrix  as   Wk  =         Yk  .  

  

− the construction of the connection weight matrix W, to store p

different associated pattern pairs simultaneously, is accomplished 

by summing up the individual correlation matrices Wk , 

  i.e.,   W = α        Wk 

      
    where  α   is  the  proportionality  or  normalizing  constant.  
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SC -   AM – auto correlator 

3. Auto-associative Memory (auto-correlators) 
 

In the previous section, the structure of  the Hopfield model has been 

explained. It is an auto-associative memory model which means patterns, 

rather  than associated  pattern pairs,  are  stored  in memory.  In this 

section, the working of an auto-associative memory (auto-correlator)  is

illustrated  using  some  examples.  
 

Working  of  an  auto-correlator :   

− how  to  store  the  patterns,  

− how  to  retrieve / recall  a  pattern  from  the  stored  patterns,   and   

− how  to  recognize  a noisy  pattern  
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SC -  AM – auto correlator 
 • How to Store Patterns  :  Example  

Consider the three bipolar patterns  A1 , A2, A3  to be stored as 

an  auto-correlator. 

       A1 =  (-1,  1 ,  -1 ,   1 ) 

     A2  =  ( 1,  1 ,    1 , -1 ) 

     A3  =  (-1, -1 ,  -1 ,   1 ) 

 

Note  that  the  outer  product  of  two  vectors  U   and   V  is 

 

                    

 
 

Thus, the outer products of each of these three  A1 , A2, A3  bipolar 

patterns  are 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore  the  connection  matrix   is    

                                                                                                                      
      
                                             =                                        
         
This  is  how  the  patterns  are  stored .                                 
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[A1 ] 
T 

4x1 [A1 ] 
 

1x4 

1 -1 1 -1
-1 1 -1 1
1 -1 1 -1

-1 1 -1 1

=

j

i

[A2 ] 
T 

4x1 [A2 ] 
 

1x4 

1 1 1 -1
1 1 1 -1
1 1 1 -1

-1 -1 -1 1

=

j

i

[A3 ] 
T 

4x1 [A3 ] 
 

1x4 

1 1 1 -1
1 1 1 -1
1 1 1 -1

-1 -1 -1 1

=

j

i

=  U      V  V U T =

U1

U2 
U3 
U4 

V1  V2 V3

U1V1  U1V2  U1V3 
U2V1  U2V2  U2V3 
U3V1  U3V2  U3V3 
U4V1  U4V2  U4V3 

=

Σ 
i=1 

  3 
[Ai ]

T

4x1 [Ai ]
 

1x4

3 1 3 -3 
1 3 1 -1 
3 1 3 -3 

-3 -1 -3 3 

T  =  [t i j ]  = 

i

j 
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SC -  AM – auto correlator 
 • Retrieve a Pattern from  the Stored Patterns  (ref. previous slide) 

 
The previous slide shows the connection matrix T of the three 

bipolar  patterns   A1 , A2, A3   stored  as                                                   

                                                                                                                            

     T  =  [t i j ]  =                                        =                                        
                                                                                                                          
 

and  one  of  the  three  stored  pattern  is   A2 = ( 1,  1 ,  1 , -1 )    
                                                                                        ai 

− Retrieve or recall of  this pattern  A2  from  the  three  stored  patterns.     

− The recall equation is   
 

                   =  ƒ (ai  t i j  ,           )   for  ∀ j  =  1 , 2 , . . .  ,  p  

Computation  for  the  recall  equation  A2  yields   α = ∑ ai t i j    and          

then  find  β 

 

 

                                            
 
 
 
 
Therefore                   =  ƒ (ai  t i j  ,          ) for  ∀ j  =  1 , 2 , . . .  ,  p    is  ƒ (α ,  β ) 

                               =  ƒ (10  ,   1)   

                               =  ƒ (6  ,     1)    

                               =  ƒ (10  ,   1)    

                               =  ƒ (-1  ,  -1)  

The values of  β   is  the  vector  pattern  ( 1,  1 ,  1 , -1 )  which  is   A2 . 

This  is  how  to  retrieve  or  recall  a  pattern  from  the  stored  patterns.  

Similarly, retrieval of  vector pattern  A3   as 

                 (           ,             ,           ,            ,  )  =  ( -1,  -1 ,  -1 , 1 )  =  A3 
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                  i = 1 2 3   4 α β 
α = ∑ ai  t i , j=1   1x3 + 1x1 + 1x3 + -1x-3 = 10 1  

α = ∑ ai  t i , j=2   1x1 + 1x3 + 1x1 + -1x-1 =   6 1  

α = ∑ ai  t i , j=3   1x3 + 1x1 + 1x3 + -1x-3 = 10 1  

α = ∑ ai  t i , j=4    1x-3 +  1x-1 +   1x-3 + -1x3 =  -1   -1  
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SC -  AM – auto correlator 
 • Recognition of Noisy Patterns   (ref. previous slide) 

 
Consider a vector  A'  = ( 1,  1 ,  1 , 1 )  which is a noisy presentation 

of  one  among  the  stored  patterns.  

− find the proximity of the noisy vector to the stored patterns 

using  Hamming  distance  measure.  

− note  that  the  Hamming  distance (HD) of  a vector  X  from Y,   where   

   X = (x1 , x2 , . . . , xn)   and  Y = ( y1, y2 , . . . , yn)   is  given  by  

     

      HD (x , y) =        | (xi  - yi ) | 

 
The  HDs  of   A'   from  each  of  the  stored  patterns  A1 , A2, A3  are  
 

HD (A' , A1)    =  ∑  |(x1  - y1 )|,   |(x2  - y2)|, |(x3  - y3 )|,  |(x4  - y4 )| 

                    =  ∑  |(1  - (-1))|,  |(1  - 1)|,    |(1  - (-1) )|, |(1  - 1)| 

                         =  4      

HD (A' , A2)    =  2 

HD (A' , A3)    =  6 

Therefore  the  vector  A'  is  closest  to  A2  and  so  resembles  it.  

In  other  words  the  vector  A'  is  a  noisy  version  of  vector  A2. 

Computation  of  recall  equation  using  vector  A'  yields :   

 

     

 

 

 
 
Therefore                     =  ƒ (ai  t i j  ,          ) for  ∀ j  =  1 , 2 , . . .  ,  p    is  ƒ (α ,  β ) 

                               =  ƒ (4  ,   1)   

                               =  ƒ (4  ,   1)    

                               =  ƒ (4  ,   1)    

                               =  ƒ (-4  , -1)  

The  values  of  β  is  the  vector  pattern  ( 1,  1 ,  1 , -1 )  which   is   A2 . 

Note : In presence of noise or in case of partial representation of vectors, 

an autocorrelator  results in the refinement of the pattern or removal of 

noise  to  retrieve  the  closest  matching  stored  pattern.   
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α = ∑ ai  t i , j=1   1x3 + 1x1 + 1x3 + 1x-3 =  4 1  

α = ∑ ai  t i , j=2   1x1 + 1x3 + 1x1 + 1x-1 =  4 1  

α = ∑ ai  t i , j=3   1x3 + 1x1 + 1x3 + 1x-3 =  4 1  

α = ∑ ai  t i , j=4    1x-3 +  1x-1 +   1x-3 + 1x3 = -4   -1  

a 
new 

 1 

a 
new 

 2 

a 
new 

 3 

a 
new 

 4 

 a 
new 

 j a
old 

j



R
C
 C

hak
ra

bort
y,

 w
w

w
.m

yr
ea

der
s.

in
fo





SC -  Bidirectional hetero AM 

4. Bidirectional Hetero-associative Memory 
 

The Hopfield one-layer unidirectional auto-associators have been discussed 

in previous section. Kosko (1987) extended this network to two-layer 

bidirectional structure called Bidirectional Associative Memory (BAM) which 

can achieve hetero-association. The important performance attributes of the 

BAM  is  its  ability  to recall stored pairs particularly in the presence of noise. 
 

Definition :  If  the associated  pattern  pairs (X, Y)  are  different   and  if  the 

model  recalls  a  pattern Y  given a  pattern  X  or vice-versa,  then  it  is 

termed  as  hetero-associative  memory. 
 

This  section  illustrates  the  bidirectional  associative  memory :  

 Operations (retrieval, addition and deletion) ,   

 Energy Function (Kosko's  correlation matrix,  incorrect recall of pattern),  

 Multiple training encoding  strategy (Wang's generalized correlation matrix). 
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SC -  Bidirectional hetero AM 
 4.1 Bidirectional Associative Memory (BAM) Operations 

 
BAM is a two-layer nonlinear neural network.  

Denote one layer as field A  with  elements Ai  and  the  other layer 

as  field B  with  elements  Bi.  
  

The  basic  coding  procedure  of  the  discrete  BAM  is  as  follows. 

Consider N  training pairs { (A1 , B1) ,  (A2 , B2), . .  , (Ai , Bi), . . (AN , BN) }

where   Ai  = (ai1 , ai2 , . . . , ain)   and   Bi  = (bi1 , bi2 , . . . , bip)   and  

             aij  ,  bij   are  either  in  ON  or  OFF  state. 

− in binary mode ,    ON = 1  and  OFF  =   0   and  

in bipolar mode,    ON = 1  and  OFF   = -1 

 

− the original correlation matrix of the BAM  is   M0  =        [      ]  [      ]     

  where Xi = (xi1 , xi2 , . . . , xin)  and Yi = (yi1 , yi2 , . . . , yip) 

  and   xij(yij)  is  the  bipolar  form of  aij(bij) 

 

The energy function  E  for  the pair (α , β )  and  correlation matrix  M  is 

     E =  - α M        

 

With this background, the decoding processes, means  the operations 

to retrieve  nearest pattern pairs,  and the addition and  deletion of 

the  pattern  pairs  are  illustrated  in  the  next  few  slides.  
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SC -  Bidirectional hetero AM 
 • Retrieve  the Nearest  of  a  Pattern Pair,  given any pair  

(ref : previous slide) 

Example     

Retrieve  the nearest  of  (Ai , Bi)  pattern pair,   given  any  pair (α , β ) . 

 

The  methods  and  the  equations  for  retrieve  are :  

− start  with  an  initial  condition  which  is any given pattern pair (α , β ),  

− determine  a  finite sequence  of pattern pairs  (α' , β' ) ,  (α" , β" ) . . . .

until an equilibrium point  (αf , βf )  is reached,  where 

 

   β'  = Φ (α M )    and   α' = Φ ( β'         ) 

  β" = Φ (α' M )    and   α" =Φ ( β''        ) 

  Φ (F)  = G  =  g1 , g2 , . . . . , gr  , 

  F  =  ( f1 , f2 , . . . . , fr ) 

  M       is correlation matrix 

                  1                           if    f i  > 0 

                  0  (binary)          

  gi  =                                ,           f i  <  0 

                 -1  (bipolar) 

                   previous  g i  ,            f i  =  0 

 

Kosko  has  proved  that   this  process   will  converge  for  any 

correlation  matrix  M. 
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SC -  Bidirectional hetero AM 
 • Addition and Deletion of Pattern Pairs 

Given a set of pattern pairs  (Xi , Yi) ,  for  i = 1 , 2, . . . , n   and  a set 

of  correlation  matrix  M  :  

− a   new  pair  (X' , Y')  can  be  added   or   

− an  existing pair (Xj , Yj)  can  be  deleted  from  the  memory  model. 
 

Addition :  add a new  pair  (X' , Y') ,   to  existing  correlation matrix  M , 

them  the  new correlation matrix  Mnew   is  given by 

 

      Mnew   =                +              + . . . .  +               +  

 

Deletion :  subtract  the matrix corresponding to  an existing pair  (Xj , Yj)

from  the  correlation  matrix  M  ,  them  the  new correlation matrix  Mnew

is  given by 

 

      Mnew  =  M  -  (            ) 

 
Note :  The addition  and deletion of information is  similar to the 

functioning of  the system  as a human  memory  exhibiting  learning 

and  forgetfulness. 
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SC -  Bidirectional hetero AM 
 4.2 Energy Function for BAM 

Note : A system that changes with time is a dynamic system. There are two types 

of dynamics in a neural network. During training phase it iteratively update 

weights and during production phase it asymptotically converges to the solution 

patterns.  State is a collection of qualitative and qualitative items that characterize 

the system  e.g., weights, data flows. The Energy function (or Lyapunov function) 

is a bounded function of  the system state that decreases with time and  the 

system solution  is  the minimum energy.    

Let  a  pair  (A , B) defines the state of a BAM.  

− to store a pattern, the value of the energy function for that pattern 

has  to  occupy  a  minimum  point  in  the  energy  landscape.  

− also adding a new patterns must not destroy the previously 

stored  patterns.    

The stability of a BAM can be proved by identifying  the  energy  function  E

with each state  (A , B) .  

− For auto-associative memory :  the energy function is   

          E(A)    =  - AM        

− For bidirecional  hetero  associative memory :  the energy function is  

         E(A, B) =  - AM       ;  for a  particular  case  A = B ,   it corresponds 

    to  Hopfield  auto-associative  function.  
 

We wish to retrieve the nearest of  (Ai , Bi)  pair, when any (α , β ) pair 

is presented as initial condition to BAM. The neurons change 

their states until a bidirectional stable state (Af , Bf) is reached. Kosko 

has shown that such stable state is reached for any matrix M  when it 

corresponds to local minimum of the energy function.  Each cycle of 

decoding  lowers  the  energy  E  if  the  energy  function for any point 

(α , β )   is  given by 

If  the  energy                     evaluated  using  coordinates  of  the  pair

(Ai , Bi)   does  not  constitute  a  local  minimum,  then  the  point cannot 

be recalled, even  though one starts with α = Ai. Thus  Kosko's  encoding 

method does  not  ensure that the stored pairs are at  a  local  minimum. 
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SC -  Bidirectional hetero AM 
 • Example  : Kosko's  BAM  for Retrieval of Associated Pair 

 
The  working  of  Kosko's  BAM  for  retrieval  of  associated   pair.   

Start with  X3,  and  hope  to retrieve  the  associated  pair Y3 . 
 
Consider  N = 3  pattern pairs (A1 ,  B1 ) ,  (A2 ,  B2 ) , (A3 ,  B3 )   given by  
    

A1 = ( 1 0 0 0 0 1 )  B1 = ( 1 1 0 0 0 )  

A2 = ( 0 1 1 0 0 0 )  B2 = ( 1 0 1 0 0 )  

A3 = ( 0 0 1 0 1 1 )  B3 = ( 0 1 1 1 0 )  

 

Convert  these three binary pattern to bipolar form replacing  0s  by -1s.  
 

X1 = (   1 -1 -1 -1 -1 1 )  Y1 = ( 1 1 -1 -1 -1 )  

X2 = ( -1 1 1 -1 -1 -1 )  Y2 = ( 1 -1 1 -1 -1 )  

X3 = ( -1 -1 1 -1 1 1 )  Y3 = ( -1 1 1 1 -1 )  

 
The correlation matrix  M   is  calculated  as  6x5 matrix 
 

       1 1 -3 -1 1  

       1 -3 1 -1 1  

-1 -1 3 1 -1   

 M  =               +                +                  = 
-1 -1 -1 1 3  

       -3 1 1 3 1  

       -1 3 -1 1 -1  

 
Suppose we start with α = X3,  and we hope to retrieve the associated pair 

Y3 .   The calculations for the retrieval of  Y3  yield :  

α M = ( -1 -1 1 -1 1 1 ) ( M ) = ( -6 6 6 6 -6 )  

Φ (α M) = β' = ( -1 1 1 1 -1 )         

       β' = ( -5 -5 5 -3 7 5 )         

 Φ (β'     ) = ( -1 -1 1 -1 1 1 ) = α'       

α' M = ( -1 -1 1 -1 1 1 ) M = ( -6 6 6 6 -6 )  

Φ (α' M) = β" = ( -1 1 1 1 1 -1 )       

 = β'          

 
This  retrieved  patern  β'  is same as  Y3 .  

Hence,    (αf , βf)  = (X3 ,  Y3 )   is correctly  recalled,  a desired result . 
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SC -  Bidirectional hetero AM 
 • Example  :  Incorrect Recall by  Kosko's  BAM 

 
The  Working  of  incorrect  recall  by  Kosko's  BAM. 

Start with  X2,  and  hope to retrieve  the  associated  pair Y2 . 

Consider  N = 3  pattern pairs (A1 ,  B1 ) ,  (A2 ,  B2 ) , (A3 ,  B3 )   given by   
 

A1 = ( 1 0 0 1 1 1 0 0 0 )  B1 = ( 1 1 1 0 0 0 0 1 0 )

A2 = ( 0 1 1 1 0 0 1 1 1 )  B2 = ( 1 0 0 0 0 0 0 0 1 )

A3 = ( 1 0 1 0 1 1 0 1 1 )  B3 = ( 0 1 0 1 0 0 1 0 1 )

 

Convert  these three binary pattern to bipolar form replacing  0s  by -1s.  
 

X1 = ( 1 -1 -1 1 1 1 -1 -1 -1 )  Y1 = ( 1 1 1 -1 -1 -1 -1 1 -1 )

X2 = ( -1 1 1 1 -1 -1 1 1 1 )  Y2 = ( 1 -1 -1 -1 -1 -1 -1 -1 1 )

X3 = ( 1 -1 1 -1 1 1 -1 1 1 )  Y3 = ( -1 1 -1 1 -1 -1 1 0 1 )

 
The correlation matrix  M  is calculated as  9 x 9 matrix 
    
          M  =                 +               +                               
       
                                

-1    3    1    1   -1   -1    1    1   -1 
 1   -3   -1   -1    1    1   -1   -1   1 
-1   -1   -3    1   -1   -1    1   -3   3 
 3   -1    1   -3   -1   -1   -3    1   -1 
-1    3    1    1   -1   -1    1    1   -1 
-1    3    1    1   -1   -1    1   1  -1 
 1   -3   -1   -1    1    1   -1   -1   1 
-1   -1   -3    1   -1   -1    1   -3  3 
-1   -1   -3    1   -1   -1    1   -3  3 

 
 
(Continued in next slide) 
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SC -  Bidirectional hetero AM 
  [Continued from previous slide] 

 
Let  the  pair (X2 ,  Y2 )  be recalled. 

X2 = ( -1 1 1 1 -1 -1 1 1 1 )  Y2 = ( 1 -1 -1 -1 -1 -1 -1 -1 1 )

 

Start with  α = X2,  and  hope  to  retrieve  the  associated  pair Y2 . 
 

The  calculations  for  the  retrieval  of  Y2  yield :  

   
α M = ( 5 -19 -13 -5 1 1 -5 -13 13 )    

Φ (α M) = ( 1 -1 -1 -1 1 1 -1 -1 1 ) = β'   

       β' = ( -11 11 5 5 -11 -11 11 5 5 )   

 Φ (β'     ) = ( -1 1 1 1 -1 -1 1 1 1 ) = α'  

α' M = ( 5 -19 -13 -5 1 1 -5 -13 13 )   

Φ (α' M) = ( 1 -1 -1 -1 1 1 -1 -1 1 ) = β"  

 = β'       

 
Here   β"  = β' .  Hence the cycle terminates with    
   

αF = α' = ( -1 1 1 1 -1 -1 1 1 1 ) = X2

βF = β' = ( 1 -1 -1 -1 1 1 -1 -1 1 ) ≠ Y2

 
But  β'  is  not  Y2 .   Thus the vector pair (X2 , Y2)  is not recalled  correctly 

by  Kosko's  decoding  process. 
 
( Continued in next slide ) 
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SC -  Bidirectional hetero AM 
  [Continued from previous slide] 

 

Check with Energy Function  :  Compute the energy functions  

    for  the coordinates of pair (X2 , Y2) ,  the energy E2 = - X2 M       = -71 

    for  the coordinates of pair (αF ,  βF) ,  the energy EF = - αF M       = -75  

However, the coordinates of pair  (X2 , Y2)  is not at its local 

minimum can be shown by evaluating the energy  E  at a point which 

is  "one Hamming distance"   way  from Y2 .  To do this  consider  a  point 
 

= ( 1 -1 -1 -1 1 -1 -1 -1 1 ) 

 

where the fifth  component  -1  of  Y2  has  been  changed  to 1.   Now  

        E =  - X2  M           =  - 73       

which is  lower than  E2   confirming  the  hypothesis  that  (X2 , Y2)  is  not 

at its  local minimum of  E. 

 

Note : The correlation matrix M used by Kosko does not  guarantee 

that   the energy of a training pair is at its local minimum. Therefore ,  a

pair Pi can be recalled  if  and only if  this  pair  is at a local minimum 

of  the energy  surface. 
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SC -  Bidirectional hetero AM 
 4.3 Multiple Training Encoding Strategy 

 
Note : (Ref. example in previous section).  Kosko extended  the unidirectional 

auto-associative to  bidirectional associative processes, using  correlation  matrix

M = Σ          computed from the  pattern  pairs.  The  system proceeds  to 

retrieve  the  nearest  pair  given any pair (α , β ), with the help of recall 

equations. However, Kosko's encoding method does not ensure that the stored 

pairs are at local minimum and hence, results in incorrect recall.  
 

Wang and other's, introduced multiple training encoding strategy  which 

ensures the correct  recall of pattern pairs. This encoding strategy is an 

enhancement / generalization of Kosko's encoding strategy. The Wang's 

generalized  correlation  matrix is  M = Σ  qi                  where  qi   is viewed 

as  pair weight  for         as  positive real numbers.  It denotes the 

minimum number of times  for using a pattern pair  (Xi , Yi)  for training to 

guarantee recall of that pair.  
 

To recover a pair (Ai , Bi)  using multiple training of order q,  let us 

augment  or  supplement  matrix  M   with a matrix  P   defined  as 
 

   P = (q – 1)                 where   (Xi , Yi)  are the bipolar form of  (Ai , Bi). 

The augmentation implies adding (q - 1)  more  pairs  located  at (Ai , Bi) to 

the  existing  correlation matrix.  As a result the energy E' can reduced to 

an arbitrarily low value by a suitable choice of q.  This  also ensures that 

the energy at (Ai , Bi) does not exceed at points which are one Hamming 

distance  away from this location.   
 

The new value of the energy function E evaluated at (Ai , Bi)  then becomes
 
   E' (Ai , Bi)  = –  Ai M         –  (q – 1)  Ai                
 
The  next  few  slides  explains  the step-by-step implementation of 

Multiple  training encoding  strategy  for  the  recall  of  three  pattern pairs 

(X1 ,  Y1 ) ,  (X1 ,  Y1 ) ,  (X1 ,  Y1 )  using one and same  augmentation matrix

M .  Also an algorithm  to summarize  the  complete   process of  multiple 

training encoding is  given.    
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SC -   Bidirectional hetero AM 
 • Example :  Multiple Training Encoding Strategy 

 

The  working  of  multiple training encoding strategy  which  ensures the 

correct  recall  of  pattern  pairs.   
 

Consider  N = 3  pattern pairs (A1 ,  B1 ) ,  (A2 ,  B2 ) , (A3 ,  B3 )   given by   
    

A1 = ( 1 0 0 1 1 1 0 0 0 )  B1 = ( 1 1 1 0 0 0 0 1 0 )

A2 = ( 0 1 1 1 0 0 1 1 1 )  B2 = ( 1 0 0 0 0 0 0 0 1 )

A3 = ( 1 0 1 0 1 1 0 1 1 )  B3 = ( 0 1 0 1 0 0 1 0 1 )

 

Convert  these three binary pattern to bipolar form replacing  0s  by -1s.  
 

X1 = ( 1 -1 -1 1 1 1 -1 -1 -1 )  Y1 = ( 1 1 1 -1 -1 -1 -1 1 -1 )

X2 = ( -1 1 1 1 -1 -1 1 1 1 )  Y2 = ( 1 -1 -1 -1 -1 -1 -1 -1 1 )

X3 = ( 1 -1 1 -1 1 1 -1 1 1 )  Y3 = ( -1 1 -1 1 -1 -1 1 0 1 )

 

Let  the pair  (X2 , Y2)  be recalled.   

X2 = ( -1 1 1 1 -1 -1 1 1 1 )  Y2 = ( 1 -1 -1 -1 -1 -1 -1 -1 1 )

 

Choose  q=2, so that  P =            , the augmented correlation matrix M 

becomes   M  =               +  2              +                               

    
    4    2    2    0    0    2    2   -2 

 2   -4   -2   -2    0    0   -2   -2   2 
 0   -2   -4    0   -2   -2   0   -4   4 
 4   -2    0   -4   -2   -2   -4    0   0 
-2    4    2    2    0    0    2    2   -2 
-2    4    2    2    0    0    2    2   -2 
 2   -4   -2   -2    0    0   -2   -2   2 
 0   -2   -4    0   -2   -2    0   -4   4 
 0   -2   -4    0   -2   -2    0   -4    4

 
 ( Continued in next slide ) 
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SC -  Bidirectional hetero AM 
  [Continued from  previous  slide] 

 

Now  give  α = X2,  and  see   that  the corresponding  pattern  pair  β =  Y2  

is  correctly  recalled  as  shown below. 
   

α M = ( 14 -28 -22 -14 -8 -8 -14 -22 22 )    

Φ (α M) = ( 1 -1 -1 -1 -1 -1 -1 -1 1 ) = β'   

       β' = ( -16 16 18 18 -16 -16 16 18 18 )    

 Φ (β'     ) = ( -1 1 1 1 -1 -1 1 1 1 ) = α'   

α' M = ( 14 -28 -22 -14 -8 -8 -14 -22 23 )    

Φ (α' M) = ( 1 -1 -1 -1 1 1 -1 -1 1 ) = β"   

 
Here   β"  =  β' .   Hence the cycle terminates with    
 

αF = α' = ( -1 1 1 1 -1 -1 1 1 1 ) = X2

βF = β' = ( 1 -1 -1 -1 1 1 -1 -1 1 ) = Y2

 
Thus,  (X2 ,  Y2 )   is correctly  recalled,  using  augmented  correlation 

matrix  M .   But,  it  is not  possible  to  recall  (X1 , Y1)  using the  same 

matrix  M  as shown in the next slide.  
 
( Continued in next slide ) 
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SC -  Bidirectional hetero AM 
  [Continued from  previous  slide] 

 

Note : The previous slide showed that the pattern pair (X2 ,  Y2 )  is correctly

recalled,  using augmented correlation matrix 

  
   M   =               +  2               +                               

 

but  then  the  same  matrix  M  can not  recall  correctly  the other 

pattern pair  (X1 ,  Y1 )  as shown below. 
 

X1 = ( 1 -1 -1 1 1 1 -1 -1 -1 )  Y1 = ( 1 1 1 -1 -1 -1 -1 1 -1 )

 

Let  α = X1  and  to  retrieve  the associated  pair Y1  the calculation shows 

α M = ( -6 24 22 6 4 4 6 22 -22 )    

Φ (α M) = ( -1 1 1 1 1 1 1 1 -1 ) = β'   

       β' = ( 16 -16 -18 -18 16 16 -16 -18 -18 )    

 Φ (β'     ) = ( 1 -1 -1 -1 1 1 -1 -1 -1 ) = α'   

α' M = ( -14 28 22 14 8 8 14 22 -22 )    

Φ (α' M) = ( -1 1 1 1 1 1 1 1 -1 ) = β"   

 
Here  β" = β' .  Hence the cycle terminates with    
 

αF = α' = ( 1 -1 -1 -1 1 1 -1 -1 -1 ) = X1

βF = β' = ( -1 1 1 1 1 1 1 1 -1 ) ≠ Y1

 
Thus,  the pattern pair (X1 ,  Y1 )  is not correctly recalled,  using augmented 

correlation  matrix  M.   
 

To tackle this problem, the  correlation  matrix  M  needs to be further 

augmented   by  multiple  training  of  (X1 ,  Y1 )  as shown in the next slide.

( Continued in next slide ) 
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SC -  Bidirectional hetero AM 
  [Continued from  previous  slide] 

 

The previous slide shows that  pattern pair  (X1 , Y1)  cannot be recalled

under the same augmentation matrix  M  that  is  able to recall (X2 , Y2).   
 

However, this  problem can be solved  by multiple training  of  (X1 , Y1)

which yields  a  further change in  M  to values  by defining  

 

             M  =  2              +  2              +                               
 

-1    5    3    1   -1   -1    1    3   -3 
 1   -5   -3   -1    1    1   -1   -3   3 
-1   -3   -5    1   -1   -1    1   -5   5 
 5   -1    1   -5   -3   -3   -5    1   -1 
-1    5    3    1   -1   -1    1    3   -3 
-1    5    3    1   -1   -1    1    3   -3 
 1   -5   -3   -1    1    1   -1   -3   3 
-1   -3   -5    1   -1   -1    1   -5   5 
-1   -3   -5    1   -1   -1    1   -5   5 

 
Now observe in the next slide that all three pairs can be correctly recalled. 
 
( Continued in next slide ) 
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SC -  Bidirectional hetero AM 
  [ Continued from  previous  slide ] 
   
   Recall  of  pattern pair   (X1 ,  Y1 )    

X1 = ( 1 -1 -1 1 1 1 -1 -1 -1 )  Y1 = ( 1 1 1 -1 -1 -1 -1 1 -1 ) 
 

Let  α = X1  and to retrieve the associated pair Y1  the calculation shows 

α M = ( 3 33 31 -3 -5 -5 -3 31 -31 )     
Φ (α M) = ( 1 1 1 -1 -1 -1 -1 1 -1 ) = β'   

(β'        ) = ( 13 -13 -19 23 13 13 -13 -19 -19 )     
  Φ (β'       ) = ( 1 -1 -1 1 1 1 -1 -1 -1 ) = α'   

α' M = ( 3 33 31 -3 -5 -5 -3 31 -31 )     
Φ (α' M) = ( 1 1 1 -1 -1 -1 -1 1 -1 ) = β"   

 

Here  β"  = β' .  Hence the cycle terminates with    
 

αF = α' = ( 1 -1 -1 1 1 1 -1 -1 -1 ) = X1 
βF = β' = ( 1 1 1 -1 -1 -1 -1 1 -1 ) = Y1 

 

Thus,  the pattern pair (X1 ,  Y1 )  is correctly recalled 

   
    Recall  of  pattern pair   (X2 ,  Y2 )      

X2 = ( -1 1 1 1 -1 -1 1 1 1 )  Y2 = ( 1 -1 -1 -1 -1 -1 -1 -1 1 ) 
 

Let  α = X2  and to retrieve the associated pair Y2  the calculation shows 

α M = ( 7 -35 -29 -7 -1 -1 -7 -29 29 )     
Φ (α M) = ( 1 -1 -1 -1 -1 -1 -1 -1 1 ) = β'   

(β'        ) = ( -15 15 17 19 -15 -15 15 17 17 )     
  Φ (β'       ) = ( -1 1 1 1 -1 -1 1 1 1 ) = α'   

α' M = ( 7 -35 -29 -7 -1 -1 -7 -29 29 )     
Φ (α' M) = ( 1 -1 -1 -1 -1 -1 -1 -1 1 ) = β"   

 

Here  β"  = β' .  Hence the cycle terminates with    
 

αF = α' = ( -1 1 1 1 -1 -1 1 1 1 ) = X2 
βF = β' = ( 1 -1 -1 -1 -1 -1 -1 -1 1 ) = Y2 

 

Thus,  the pattern pair (X2 ,  Y2 )  is correctly recalled 

   
    Recall  of  pattern pair   (X3 ,  Y3 )      

X3 = ( 1 -1 1 -1 1 1 -1 1 1 )  Y3 = ( -1 1 -1 1 -1 -1 1 0 1 ) 
 

Let  α = X3  and to retrieve the associated pair Y3  the calculation shows 

α M = ( -13 17 -1 13 -5 -5 13 -1 1 )     
Φ (α M) = ( -1 1 -1 1 -1 -1 1 -1 1 ) = β'   

(β'        ) = ( 11 -11 27 -63 11 11 -11 27 27 )     
  Φ (β'       ) = ( 1 -1 1 -1 1 1 -1 1 1 ) = α'   

α' M = ( -13 17 -1 13 -5 -5 13 -1 1 )     
Φ (α' M) = ( -1 1 -1 1 -1 -1 1 -1 1 ) = β"   

 

Here  β"  = β' .  Hence the cycle terminates with    
 

αF = α' = ( 1 -1 1 -1 1 1 -1 1 1 ) = X3 
βF = β' = ( -1 1 -1 1 -1 -1 1 0 1 ) = Y3 

 

Thus,  the pattern pair (X3 ,  Y3 )  is correctly recalled 
   
  ( Continued in next slide )  
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SC -  Bidirectional hetero AM 
  [Continued from  previous  slide]  

Thus, the  multiple training encoding strategy  ensures  the  correct  recall 

of a pair for a suitable augmentation of  M . The generalization of  the 

correlation matrix, for the  correct recall of all training pairs, is written  as 
 

       M  =         qi                where   qi 's   are +ve   real numbers.  
 
 
This modified  correlation matrix  is called generalized correlation matrix.

Using one and same  augmentation matrix  M,  it is possible  to  recall all 

the training pattern pairs .  
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SC -  Bidirectional hetero AM 
 • Algorithm  (for the Multiple training encoding strategy) 

 
To summarize  the  complete   process of  multiple training encoding an 

algorithm is  given  below.    
 

Algorithm  Mul_Tr_Encode  ( N ,         ,          ,        )   where  
 

      N  :  Number of stored patterns set   

       ,       :  the bipolar pattern pairs    

        =   (       ,       ,  . . . . ,         )     where        =  (         ,         , . . .         )  

        =   (       ,       ,  . . . . ,         )      where       =  (        ,         , . . .           )  

         :   is  the  weight vector   (q1 , q2 ,  . . . .  , qN ) 

 
  Step 1 Initialize correlation matrix  M  to null matrix   M  ←  [0] 

  Step 2 Compute the correlation matrix  M  as 

For  i ←  1 to  N 

M ←  M  ⊕   [ qi  ∗   Transpose (       )  ⊗   (       )     end      

(symbols    ⊕   matrix addition,    ⊗   matrix multiplication,  and   
     ∗   scalar multiplication)  

 
  Step 3 Read input bipolar pattern   

  Step 4 Compute   A_M  where   A_M   ←       ⊗   M 

  Step 5 Apply  threshold function   Φ  to   A_M   to get          

ie              ←   Φ ( A_M  )  

where  Φ   is defined as  Φ (F)  = G  =  g1 , g2, . . . . , gn   
 
 

  Step 6 Output          is the associated pattern pair 

  end   
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